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Abstract

Accurate multiple sequence alignment (MSA) is imperative for the comprehensive analysis

of biological sequences. However, a notable challenge arises as no single MSA tool consis-

tently outperforms its counterparts across diverse datasets. Users often have to try multiple

MSA tools to achieve optimal alignment results, which can be time-consuming and memory-

intensive. While the overall accuracy of certain MSA results may be lower, there could be

local regions with the highest alignment scores, prompting researchers to seek a tool capa-

ble of merging these locally optimal results from multiple initial alignments into a globally

optimal alignment. In this study, we introduce Two Pointers Meta-Alignment (TPMA), a

novel tool designed for the integration of nucleic acid sequence alignments. TPMA employs

two pointers to partition the initial alignments into blocks containing identical sequence frag-

ments. It selects blocks with the high sum of pairs (SP) scores to concatenate them into an

alignment with an overall SP score superior to that of the initial alignments. Through tests on

simulated and real datasets, the experimental results consistently demonstrate that TPMA

outperforms M-Coffee in terms of aSP, Q, and total column (TC) scores across most data-

sets. Even in cases where TPMA’s scores are comparable to M-Coffee, TPMA exhibits sig-

nificantly lower running time and memory consumption. Furthermore, we comprehensively

assessed all the MSA tools used in the experiments, considering accuracy, time, and mem-

ory consumption. We propose accurate and fast combination strategies for small and large

datasets, which streamline the user tool selection process and facilitate large-scale dataset

integration. The dataset and source code of TPMA are available on GitHub (https://github.

com/malabz/TPMA).
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(1) The human mitochondrial (mt) genomes

dataset comprised 672 human mitochondrial

genomes, ranging from a maximum length of

16579 bp to a minimum of 16556 bp. We created

sub-datasets by randomly selecting 30 sequences

without replacement, and this procedure was

repeated four times (Supplemental Table S2). (2)

The hyper-variable segment II (HVS-II) dataset

consisted of 100 sequences extracted from the

HVS-II control region of the central European

human mitochondrial genomes, retrieved from the
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Author summary

Accurate multiple sequence alignment (MSA) is vital for comprehensive biological

sequence analysis. However, as no single MSA tool consistently outperforms others across

diverse datasets, researchers must invest significant time exploring multiple tools to iden-

tify the most suitable one for their specific dataset. To address this, researchers seek tools

that can merge locally optimal results from diverse initial alignments into a globally opti-

mal alignment. Our novel approach, Two Pointers Meta-Alignment (TPMA), employs a

two-pointer to partition initial alignments into blocks, selecting those with the higher sum

of pairs (SP) scores for integration into a globally optimal alignment. TPMA consistently

outperforms M-Coffee, demonstrating superior aSP, Q, and total column (TC) scores,

coupled with faster running times and lower memory consumption. We present compre-

hensive assessments of various MSA tools, proposing efficient combination strategies for

diverse datasets. Our tool, TPMA, and associated resources are publicly available on

GitHub (https://github.com/malabz/TPMA), offering a valuable contribution to the field

of evolutionary biology and streamlining the selection process for users dealing with

large-scale datasets.

Introduction

Multiple sequence alignment (MSA) is a common technique for analyzing biological

sequences, encompassing structure and function estimation, evolutionary relationship deter-

mination, gene identification, and more [1]. Hence, the precision of MSA directly shapes the

outcomes of analyses in bioinformatics, holding paramount importance in discerning biologi-

cal significance. However, due to its time-consuming nature, many MSA tools, like MAFFT

[2] and MUSCLE3 [3], resort to heuristic methods to address computational complexities.

Despite their extensive usage, tools employing heuristic methods exhibit two common limita-

tions. Firstly, the persistence of an incorrectly inserted gap, adhering to the "once a gap, always

a gap" rule, can influence subsequent alignments. The other issue is the presence of a local opti-

mal trap. According to the greedy principle, the optimal solution for each subproblem may

not necessarily be equivalent to the optimal solution for the global problem. To overcome the

drawbacks above, researchers typically employ iterative optimization and meta-alignment

methods to further enhance alignment accuracy.

Iterative optimization involves refining the existing alignment by realigning potential low-

quality regions, employing two partition methods: vertical and horizontal realigners. Refin-

Align [4], a vertical realigner, partitions the initial alignment into blocks based on columns

with identical bases. It then eliminates gaps within each block and realigns the sequences using

Promalign. If the new alignment exhibits higher accuracy, it replaces the initial alignment. On

the other hand, the horizontal realigners, including REFINER [5], RF [6], and ReformAlign

[7], adopt distinct strategies. Similar to REFINER, RF randomly selects a sequence in each iter-

ation and realigns it with the profile of the remaining sequences; if the accuracy of the new

alignment improves, it serves as the input for the next iteration round until the objective func-

tion score converges or reaches the cycle limit. ReformAlign differs from the others by inde-

pendently realigning all sequences within a single iterative round. This realignment is

performed using a summarization profile constructed from the initial alignment. When new

gaps are inserted into the profile, ReformAlign automatically switches to a profile fine-tuning

mode to account for the new insertion(s), and once the profile is successfully updated, the

realignment is restarted using the new profile until the new alignment is obtained after all
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GenBank database (accession numbers:

KF601094-KF601193). The dataset was

subsequently partitioned into ten sub-datasets. (3)

The 16S ribosomal RNA (rRNA) dataset

encompassed 108,413 DNA sequences encoding

RNA found in bacteria and archaea, with an

approximate length of 1.5 kb. We created eight

sub-datasets for this dataset, each containing 100

sequences sampled randomly without

replacement. (4) The 23S rRNA dataset

encompassed 641 sequences of Mycobacterium

23S rRNA, sourced from the SILVA rRNA database

(http://www.arb-silva.de/) for bacteria, archaea,

and eukaryotes. Spanning lengths from 1909 to

3485 bp, these sequences were partitioned into ten

groups (Supplemental Table S5). (5) The

respiratory syndrome coronavirus 2 (SARS-CoV-2)

is an RNA virus that causes the COVID-19

pandemic. Two datasets were derived from the

GISAID website (https://www.gisaid.org, updated

November 11, 2021.) The SARS-CoV-2_20200301

datasets contain 156 sequences (29409 to 29927

bp) collected on March 1, 2020, and were divided

into four sub-datasets. (6) The

SARS-CoV-2_20200417 datasets feature 1020

sequences (29409 to 29927 bp) collected on April

17, 2020. From this, we randomly selected 100

sequences without replacement to create a sub-

dataset, and this process was repeated four times.

Two of the four simulated datasets were generated

using hierarchical tree simulation to obtain 16S-like

and 23S-like rRNA datasets. This simulation was

carried out using INDELible v1.03, and the

substitution models were based on estimates

obtained from 3000 16S rRNA and 641

Mycobacterium 23S rRNA alignments (as

previously mentioned), utilizing IQ-TREE v2.2.0-

beta. One hundred 16S rRNA sequences and

Mycobacterium 23S rRNA sequences, randomly

chosen from the datasets as mentioned above,

were aligned to construct the simulation trees.

Subsequently, the process of generating the

simulation 16S-like and 23S-like datasets was

rooted in these two simulation trees. Each tree’s

branch length was assigned a random value from 0

to 1 (NON-ULTRAMETRIC). The simulated

sequence lengths were set at 1.5 kb for 16S-like

rRNA and 4 kb for 23S-like rRNA. The indel model

parameter used was LAV 5 50, with insertion and

deletion rates of 0.01 and 0.1, respectively. To

simulate datasets with varying mean similarities,

the tree length (sum of branch lengths) was

adjusted to achieve mean similarities of 99%, 98%,

97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%,

85%, 80%, 75%, and 70%. The mean similarity

represents the average of similarities between any

two sequences within the dataset (https://github.

https://github.com/malabz/TPMA
https://doi.org/10.1371/journal.pcbi.1011988
http://www.arb-silva.de/
https://www.gisaid.org
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sequences have been realigned. However, among the methods mentioned above, currently

only ReformAlign is available.

Meta-alignment, a process aimed at synthesizing multiple initial alignments, is employed to

derive a high-accuracy alignment. The ComAlign algorithm [8] identifies qualitatively conser-

vative blocks within the initial alignments and amalgamates them through dynamic program-

ming to produce a novel alignment, often exhibiting improvements. MergeAlign [9] generates

a weighted directed acyclic graph (DAG), wherein each node represents the site combinations

of each column in the initial alignments. Each edge signifies a transition between two adjacent

columns, and the weight of each edge corresponds to the number of initial alignments contain-

ing that particular transition (between two adjacent columns). Finally, the nodes (columns) in

the maximum weight path form the merged alignment. AQUA [10], an automated quality

improvement program for Multiple Sequence Alignment (MSA), initiates its process by gener-

ating two initial alignments through MUSCLE3 and MAFFT. These alignments are subse-

quently independently optimized using RASCAL [11], resulting in two refined alignments. In

its culmination, the meta-alignment process yields the alignment with the highest accuracy

among the four, determined by the NorMD score. The most widely utilized meta-alignment

method is M-Coffee [12], which constructs a consistency library of each pair of residues with

residue pairs from all other alignments to increase the weight of the aligned pairs accepted by

most MSA tools. However, it is noteworthy that this inclusive approach implies that incor-

rectly aligned pairs prevalent across multiple alignments will also be weighted. Consequently,

the accuracy of the M-Coffee meta-alignment can either be improved or diminished, depend-

ing on the accuracy of each individual MSA tool.

In this study, we have developed TPMA, a meta-alignment tool for integrating nucleic acid

sequence alignments, which employs a two-pointers approach to partition the initial align-

ments into blocks with identical sequence fragments and concatenate blocks with higher SP

scores to form the final alignment. We tested TPMA, M-Coffee, and ReformAlign on four sim-

ulated and six real datasets. The results consistently show that TPMA outperforms M-Coffee

in terms of aSP, Q, and TC scores across most datasets. Notably, in cases where TPMA scores

closely align with M-Coffee, TPMA exhibits significantly lower time and memory consump-

tion. In datasets with varying similarity spans, ReformAlign optimization led to approximately

50% of alignments experiencing decreased TC scores in simulated datasets. Thus, TPMA

exhibits superior performance compared to both M-Coffee and ReformAlign. To save time for

users while selecting MSA tools, we screened all MSA tools used in our experiments based on

accuracy, time, and memory consumption. Therefore, we propose accurate and fast combina-

tion strategies to integrate small and large datasets, ensuring efficient integration while

upholding alignment accuracy.

Results

TPMA outperforms M-Coffee in alignment quality, running time, and

memory consumption

In this experiment, we employed two simulated datasets, 16S-like and 23S-like rRNA, along

with four real datasets: 16S rRNA, human mitochondrial (mt) genomes, SARS-CoV-

2_20200301, and SARS-CoV-2_20200417 datasets. Furthermore, nine MSA tools, namely

ClustalW2, Dialign-TX, Kalign3, MAFFT, MUSCLE3, MUSCLE5, PCMA, POA, and T-Cof-

fee, were employed to generate initial alignments. Detailed information regarding the versions

and operating parameters of these MSA tools can be found in S10 Table.

M-Coffee takes the original, unaligned sequences dataset as input and utilizes the "-method"

parameter to specify the MSA tools for obtaining the initial alignments. To ensure
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com/malabz/MSATOOLS/blob/main/length_

similarity_distribution/length_similarity_

distribution.py), determined by the percentage of

matched characters in their pairwise alignments

conducted using MAFFT. Detailed information

regarding these two sets of 14 sub-datasets can be

found in Table S8. Every sub-dataset included three

replicates, each containing 100 simulated

sequences. The mean length is the average of the

average sequence lengths from the three

replicates. The remaining two datasets are

simulated CIPRES-128 and CIPRES-256 rRNA

datasets evolved from the same root rRNA

sequence on the trees featuring 128 and 256 taxa,

respectively (Supplemental Table S9). These

datasets were downloaded from trials 1 to 10 on

the CIPRES SIMULATION DATA website (https://

kim.bio.upenn.edu/software/csd.shtml). The

simulation parameters were adjusted to ensure that

the simulated sequences mirror authentic small

subunit rRNA (ssu rRNA) sequences regarding

sequence identity, indel count, the ratio between

substitutions and indels, and other relevant

characteristics. The datasets were formatted in

NEXUS format. The Nexus to Fasta Sequence

Convert tool (http://www.bugaco.com) was utilized

for conversion into FASTA format to obtain the

reference sequences. Subsequently, gaps were

removed from the reference to derive the unaligned

test datasets. Sequence similarity is computed for

every dataset as the ratio of matching base pairs in

all pairwise alignments (generated using MAFFT)

within a sub-dataset. The script for this

computation is available on https://github.com/

malabz/MSATOOLS/blob/main/length_similarity_

distribution/length_similarity_distribution.py.

Lastly, employ Python’s Matplotlib library to

generate a histogram depicting the distribution of

sequence similarity.
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compatibility with M-Coffee, we crafted a shell script specifically for calling MUSCLE5, while

the remaining MSA tools have already been integrated into M-Coffee by default. The shell

script for invoking MUSCLE5 and its usage instructions can be found at https://github.com/

malabz/TPMA/tree/main/tools. The input for TPMA comprises multiple initial alignments

generated by different MSA tools, with each aligner’s running parameters precisely identical to

those utilized in the M-Coffee, guaranteeing an impartial experimental setup. Two simulated

datasets with references were evaluated by aSP, Q, and TC scores, while the alignment quality

of the four real datasets was assessed based on the aSP score. The running time of TPMA refers

to the duration taken to merge multiple initial alignments, while memory consumption indi-

cates the peak amount of memory utilized during this merging process. Regarding M-Coffee,

the running time and memory consumption encompass the time and maximum memory used

from initial library construction to combination completion. Specifically, the reported running

time and memory consumption by TPMA are related to the merging process. In the case of

M-Coffee, its memory usage during merging corresponds to the peak memory usage of its

final output. To measure the timing of the M-Coffee merging process, we introduced a time-

stamp mechanism. This entailed placing a timestamp at the start of merging, following the if

function in line 5093 of the t_coffee.c file in its source code. Another timestamp was logged

upon program completion, enabling us to accurately compute the duration of the M-Coffee

merging process. The time and memory consumed by the MSA tools generating the initial

alignments were excluded for the purpose of comparing TPMA and M-Coffee.

Fig 1A and 1D demonstrate that the TPMA results consistently outperform the other nine

initial alignments and the combined results of M-Coffee in terms of aSP, Q, and TC (except

for the 99% similarity dataset) scores across the 16S-like and 23S-like rRNA datasets. This

advantage becomes more pronounced as the dataset similarity decreases. For the 16S-like

rRNA datasets with a 99% similarity, TPMA achieves an average TC score of 0.9967, while

ClustalW2 and PCMA achieve an average TC score of 0.9970, and M-Coffee’s average TC

score is 0.9957. Similarly, for the 23S-like rRNA datasets with a 99% similarity, TPMA attains

an average TC score of 0.9963, while T-Coffee and M-Coffee achieve average TC scores of

0.9969 and 0.9960, respectively. Consequently, TPMA’s results closely approach the highest

TC score and surpass those of M-Coffee. Furthermore, TPMA demonstrates shorter running

time and lower memory consumption than M-Coffee on both sets of datasets (Fig 1B and 1E).

In the 16S rRNA datasets with an average similarity of 75%, TPMA shows a superior aSP score

compared to M-Coffee (Fig 2A). However, for the other three real datasets with high average

similarities, TPMA and M-Coffee demonstrate close scores (Fig 2D, 2G, and 2J). Furthermore,

TPMA exhibits a significantly shorter running time and consumes considerably less memory

than M-Coffee (Fig 2B, 2E, 2H, and 2K).

Afterward, we assessed the performance of TPMA, M-Coffee, and ReformAlign in enhanc-

ing alignment quality. First, we optimized each initial alignment utilizing ReformAlign’s fun-

damental parameters (detailed in S10 Table), calculated the difference in aSP, Q, and TC

scores between the optimized and initial alignments, and then computed the discrepancy

between the combined results and each participating initial alignment for TPMA and

M-Coffee.

On both 16S-like and 23S-like rRNA datasets (Fig 1C and 1F), TPMA improves or main-

tains the aSP score in all datasets, and it enhances Q and TC scores in the majority of datasets

when compared to M-Coffee and ReformAlign. Similarly, compared to M-Coffee and Refor-

mAlign, TPMA improves more alignments’ aSP score across all four real datasets, which were

randomly sampled to obtain multiple replicas for comparison (Fig 2C, 2F, 2I, and 2L). It is

noteworthy that ReformAlign faced limitations in optimizing the two SARS-CoV-2 datasets

due to memory limitations exceeding the device’s upper threshold.
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Thus, TPMA consistently imparts heightened alignment quality compared to most initial

alignments, a trend especially pronounced in datasets exhibiting lower similarity. While, in

certain instances, TPMA’s score might marginally fall below that of the initial alignment, it

consistently approaches the highest score and surpasses the outcome achieved by M-Coffee. In

contrast, the accuracy of M-Coffee generated alignments is susceptible to the accuracy of the

initial alignment, potentially between the best and worst initial alignments, showing a limited

ability to improve the quality of initial alignments. TPMA exhibits a shorter running time and

less memory consumption than M-Coffee. Furthermore, as sequence length and quantity

increase, ReformAlign’s memory demands become excessively high, constraining its

scalability.

Accurate strategy: achieving comparable results with 4 MSA tools as with

All 9

Initially, we arranged the 9 MSA tools based on the accuracy of their alignment results, reveal-

ing that the top 5 aligners derived from the aSP, Q, and TC scores were identical, comprising

ClustalW2, MAFFT, MUSCLE3, PCMA, and T-Coffee, albeit in varying specific orders

(Fig 3A). By utilizing MSA tools’ aSP score ranking, we added and merged the initial align-

ments one by one from the top-ranked MSA tools, then computed the average accuracy across

all sub-datasets, illustrated as the yellow square curve (Fig 3B). "Top 2" signifies the result

obtained by combining the alignments derived from the top two aligners, T-Coffee and MUS-

CLE3, by TPMA. "Top 3" represents the combined result of the top three T-Coffee, MUSCLE3,

and MAFFT; the subsequent combinations are deduced accordingly. We replicate the identical

procedure using the rankings derived from Q and TC scores, resulting in the outcomes repre-

sented by the blue circular curve and the red triangular curve, respectively. Notably, as more

initial alignments were added, the aSP, Q, and TC scores initially increased but eventually

reached a plateau or slightly decreased. This observation suggests that the inclusion of Dialign-

TX, Kalign3, MUSCLE5, and POA in these combinations did not enhance the final align-

ment’s quality. Upon reanalysis of the aSP, Q, and TC scores across various sequence similari-

ties (S1–S3 Figs), similar pronounced trends were observed in low-similarity sub-datasets,

highlighting TPMA’s enhanced efficacy in integrating such datasets.

The trend from "Top 4" to "Top 5" remains constant, leading us to deduce the presence of

redundant MSA tools within the "Top 5" combination. Consequently, we performed ablation

experiments on the selected top 5 MSA tools, revealing that the final alignment remained

unchanged when either ClustalW2 or PCMA was excluded (Fig 3C). Considering their run-

ning time and memory utilization on 23S-like rRNA datasets (Fig 3E), ClustalW2 demon-

strates reduced memory consumption and faster processing time than PCMA. Consequently,

Fig 1. Comparative analysis of TPMA, M-Coffee, and ReformAlign on 16S-like and 23S-like rRNA datasets. Each dataset consists of 14 sub-

datasets, each exhibiting varying levels of sequence similarity ranging from 99% to 70%. Within each similarity sub-dataset, three replicates are

included. For each replicate, nine initial alignments are acquired and subsequently merged using TPMA and M-Coffee. A, D The aSP, Q, and TC

scores of TPMA, M-Coffee, and nine MSA tools across 16S-like and 23S-like rRNA datasets. For each gird, the average of three repetitions in one sub-

dataset was calculated and subjected to min-max normalization using the alignment scores from all tools. B, E The changes in running time and

memory usage of TPMA and M-Coffee across different levels of similarity for the 16S-like and 23S-like rRNA datasets. Each point represents the

average time and memory consumption resulting from the combination of TPMA and M-Coffee across the three replicates. This computation

excludes the time and memory required for obtaining the initial alignments. C, F Compare improvements in aSP, Q, and TC scores of TPMA,

M-Coffee, and ReformAlign for initial alignments on 16S-like and 23S-like rRNA datasets. Each dataset consists of 14 sub-datasets, with three

replicates per sub-dataset. A total of 378 (14×3×9) initial alignments were generated using 9 MSA tools. ReformAlign optimized these 378 initial

alignments, calculating the differences between the scores of the optimized and unoptimized initial alignments for aSP, Q, and TC scores.

Additionally, the disparities between the scores of the merged alignments (through TPMA and M-Coffee) and the unmerged initial alignments were

also computed for aSP, Q, and TC scores. A total of 378 differences were obtained for TPMA and M-Coffee, obtained from 14×3 replicates, with each

replicate generating 9 differences. The proportions of "improved," "constant," and "reduced" are summarized in donut charts.

https://doi.org/10.1371/journal.pcbi.1011988.g001
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Fig 2. Comparative analysis of TPMA, M-Coffee, and ReformAlign across the four real datasets. The 16S rRNA

datasets include 8 subsets, each comprising 100 sequences, and nine MSA tools were utilized to generate the initial

alignments for these datasets. Additionally, the mt genomes, SARS-CoV-2_20200301, and SARS-CoV-2_20200417

datasets consist of 4 subsets containing 30, 39, and 100 sequences, respectively. A, D, G, J The aSP score of TPMA,

M-Coffee, and various MSA tools on the 16S rRNA, mt genomes, SARS-CoV-2_20200301, and SARS-CoV-2_20200417
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we refined the accurate combination strategy to encompass four aligners: ClustalW2, MAFFT,

MUSCLE3, and T-Coffee. Further, ablation experiments on these four MSA tools demon-

strated that each aligner significantly contributed to the final alignment quality, affirming their

indispensability within the accurate strategy (Fig 3D).

We conducted tests on seven datasets to further validate the broad applicability of the accu-

rate strategy when utilizing TPMA. TPMA combines nine initial alignments, "Top 5" initial

alignments, and the four initial alignments from the accurate strategy to generate TPMA_C9,

TPMA_C5, and TPMA_C4, respectively. In contrast, M-Coffee integrates the nine initial

alignments and the four initial alignments of the accurate strategy, yielding M-Coffee_C9 and

M-Coffee_C4, respectively. TPMA’s combined outcomes on 16S-like and 23S-like rRNA data-

sets consistently outperform M-Coffee in terms of aSP, Q, and TC scores. Meanwhile,

TPMA_C9, TPMA_C5, and TPMA_C4 show highly similar results (Fig 4A and 4B). These

three TPMA outcomes also demonstrate comparable performance across simulated CIPRES-

128, CIPRES-256, and 16S rRNA datasets, where the sequences exhibit average similarity rates

of 80% for the first two and 75% for the latter, all-surpassing M-Coffee (Fig 4C–4E). The

"NULL" signifies that no results were acquired from TPMA-C9 and M-Coffee_C9 due to the

infinite alignment time of Dialign-TX (Fig 4D). The HVS-II and 23S rRNA datasets exhibited

an average similarity above 93%. Results from three TPMA and two M-Coffee alignments

closely align on these datasets, with TPMA slightly surpassing M-Coffee’s outcomes (Fig 4F

and 4G). Therefore, the outputs from the comprehensive test datasets validate that integrating

the four alignments acquired through the accurate strategy can yield results of comparable

quality to combining all nine alignments while saving time and memory.

Fast strategy: enhancing alignment accuracy with time efficiency for large-

scale datasets

During the above experiment, we observed that early-developed MSA software, such as T-Cof-

fee and Dialign-TX, faced difficulties in aligning datasets with longer or larger sequences, lead-

ing to considerable time and memory expenses, potentially limiting options for certain users,

particularly considering the inclusion of T-Coffee in the accurate strategy. To address this, we

identify newly developed MSA software that exhibits swift alignment speed and lower memory

consumption, and by integrating these tools with TPMA, we formulated a fast combination

strategy, explicitly catered for datasets with larger scales, aiming to save time while preserving

alignment accuracy as closely as possible to the accurate strategy results. We evaluated the per-

formance of the fast strategy which selected the four most rapid MSA tools (Fig 3E), namely

HAlign3, Kalign3, MAFFT, and WMSA2, by conducting experiments on eight datasets. The

experimental approach involved running the four MSA tools to acquire initial alignments, fol-

lowed by merging these alignments using TPMA to generate "TPMA_F4". We compared the

accuracy of TPMA_F4 with that of "TPMA_C4" from the 4.2 experiment and recorded the

datasets. It’s worth noting that some MSA tools failed to align on these datasets; only the tools depicted in the figure

completed the alignment. The resulting initial alignment was then utilized for the merging process using TPMA and

M-Coffee. B, E, H, K The running time and memory usage of TPMA and M-Coffee for the 16S rRNA, mt genomes,

SARS-CoV-2_20200301, and SARS-CoV-2_20200417 datasets. Notably, the values exclude the time and memory needed

to obtain the initial alignments. C, F, I, L The enhancements in the aSP score of initial alignments on the 16S rRNA (C),

mt genomes (F), SARS-CoV-2_20200301 (I), and SARS-CoV-2_20200417 (L) datasets among TPMA, M-Coffee, and

ReformAlign. Specifically, the 16S rRNA datasets comprise 72 (8×9) initial alignments, while the mt genomes datasets

entail 28 (4×7) initial alignments. Furthermore, both the SARS-CoV-2_20200301 and SARS-CoV-2_20200417 datasets

each encompass 20 (4×5) initial alignments. The proportions of "improved", "constant", and "reduced" are calculated

based on the number of initial alignments for each dataset. It’s worth noting that for the two SARS-CoV-2 datasets,

ReformAlign’s results were not displayed due to exceeding the device’s memory limit.

https://doi.org/10.1371/journal.pcbi.1011988.g002
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Fig 3. The results of screening the accurate strategy on the 23S-like rRNA datasets. A MSA tool rankings are determined based on aSP, Q,
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from the average values spanning all sub-datasets with varying degrees of similarity. B Sequential integration of initial alignments from MSA
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memory consumption and running time required for obtaining all initial alignments. The

memory consumption represents the maximum usage of TPMA_F4 and TPMA_C4 when

running individual MSA tools, while the running time refers to the cumulative time taken by

TPMA_F4 and TPMA_C4 when running each MSA tool. The time and memory consumption

associated with combining initial alignments in TPMA_F4 and TPMA_C4 were disregarded.

In the 16S-like and 23S-like rRNA datasets, the aSP and TC score curves of TPMA_C4 and

TPMA_F4 almost overlap, while, as the sequence similarity falls below 80%, the Q score of

TPMA_F4 slightly lags behind that of TPMA_C4. Notably, TPMA_F4 demands significantly

less time for initial alignments than TPMA_C4, and when the sequence similarity reaches 85%

or higher, TPMA_F4 exhibits lower memory consumption than TPMA_C4 (Fig 5A and 5B).

On the simulated CIPRES-128 and CIPRES-256 rRNA datasets (sequence similarity: 80%), the

aSP score distributions are similar between the two methods, while the Q score and TC score

distributions of TPMA_F4 are slightly lower than those of TPMA_C4 (Fig 5C and 5D). For the

16S rRNA datasets (sequence similarity: 75%), TPMA_F4 achieves a slightly lower aSP score

than TPMA_C4 (Fig 5E). However, in the case of the HVS-II datasets (sequence similarity:

98.6%), 23S rRNA datasets (sequence similarity: 92.7%), and mt genomes datasets (sequence

similarity: 99.7%), the TPMA_C4 and TPMA_F4 results demonstrate similar aSP score distri-

butions (Fig 5F–5H). While the disparity in peak memory consumption between the two

methods is minimal in the above datasets, TPMA_F4 requires significantly less time for initial

alignments than TPMA_C4. Especially on the mt-genomes datasets, TPMA_C4’s completion

time for all initial alignments extends up to 4 days, accompanied by memory usage exceeding

100GB, whereas TPMA_F4 accomplishes the task within a mere 1 minute, utilizing 290MB of

memory. The experimental results affirm that, when sequence similarity exceeds 80%, the fast

strategy can attain alignment quality comparable to the accurate strategy, significantly reduc-

ing the time required for initial alignments, particularly on extensive datasets.

Discussion

We developed Two Pointers Meta-Alignment (TPMA) to enhance the quality of nucleic acid

sequence alignments by combining blocks with high SP scores from multiple initial align-

ments. The assessment of TPMA across six real and four simulated datasets revealed that it

improves the aSP, Q, and TC scores of initial alignments across most datasets, particularly in

datasets with low sequence similarity, all while reducing memory and time consumption.

While TPMA’s result exhibited a relatively lower score in partial high sequence similarity data-

sets, it closely approached the highest score of initial alignments and outperformed the result

from M-Coffee. Furthermore, in contrast to M-Coffee and ReformAlign, TPMA demonstrates

a more significant capability for enhancing the quality of initial alignments. Subsequently, we

tools following ranking by aSP, Q, and TC scores. The ranking is derived from the "Mean" results of A. Referring to the aSP score rankings (the

orange line), the "Top 2" position indicates the integration of T-Coffee and MUSCLE3, while the "Top 3" placement corresponds to the fusion

of T-Coffee, MUSCLE3, and MAFFT, and so forth. Analyzing the Q score rankings (the blue line), the "Top 2" position signifies the

combination of T-Coffee and MUSCLE3, while the "Top 3" is the fusion of T-Coffee, MUSCLE3, and ClustalW2, and so forth. Similarly, based

on the TC score ranking (the red line), the "Top 2" position indicates the combination of ClustalW2 and PCMA, while the "Top 3" placement

represents the integration of ClustalW2, PCMA, and T-Coffee, and so forth. The outcomes represent the average values of the aSP, Q, and TC

scores of combined alignments across all sub-datasets of different similarities. C Ablation experiment on the "Top 5" MSA tools. The disparities

between the aSP, Q, and TC scores of the combined alignment obtained from the remaining four initial alignments (excluding the indicated

MSA tool) and from all five initial alignments were computed. If the score from combining the remaining four initial alignments is higher, it’s

classified as ’improved’; if it remains the same, it’s labeled ’constant’; if it decreases, it’s categorized as ’reduced’. Each histogram displays the

proportions of "improved," "constant," and "reduced" cases, calculated from a total of 42 datasets (14*3) across all sub-datasets. D Ablation

experiment on the "Top 4" MSA tools (similar to C). E The running time and memory consumption of 11 MSA tools on 42 23S-like rRNA

datasets are presented. Logging was conducted using Python’s psutil library.

https://doi.org/10.1371/journal.pcbi.1011988.g003
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Fig 4. Validation of the accurate strategy on additional datasets. TPMA_C9 and M-Coffee_C9 represent the combined

alignments of 9 initial alignments from ClustalW2, Dialign-TX, Kalign3, MAFFT, MUSCLE3, MUSCLE5, PCMA, POA,

and T-Coffee. TPMA_C5 combines initial alignments from 5 MSA tools: ClustalW2, MAFFT, MUSCLE3, PCMA, and

T-Coffee. TPMA_C4 and M-Coffee_C4 are the combined alignments of merging the initial alignments from the accurate

strategy (ClustalW2, MAFFT, MUSCLE3, and T-Coffee). A, B We present the trends in aSP, Q, and TC scores of

PLOS COMPUTATIONAL BIOLOGY A meta-alignment tool to ensemble different multiple nucleic acid sequence alignments

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011988 April 1, 2024 11 / 22

https://doi.org/10.1371/journal.pcbi.1011988


evaluated the MSA tools utilized in the experiment and presented users with accurate and fast

strategies. Validation of the test datasets affirmed that these two strategies could uphold align-

ment accuracy while conserving time and facilitating the integration of large-scale datasets. In

our experimental tests, we focused solely on comparing the running time and memory con-

sumption of TPMA and M-Coffee, without including ReformAlign in the comparison. This

decision stems from the fact that TPMA and M-Coffee employ similar optimization strategies,

namely merging multiple initial alignments, while ReformAlign conducts re-alignment against

a single initial alignment. As a result, a direct comparison with TPMA and M-Coffee in terms

of time and memory consumption is not feasible.

During a validation experiment to assess TPMA’s efficacy, we employed 9 MSA tools for

the integration. Recognizing the impracticality for users to execute numerous MSA tools indi-

vidually before integration, we streamlined the process by offering users an accurate strategy,

ensuring equivalent or similar alignment quality with the fewest tools. This enhancement in

user convenience saves valuable time typically spent on tool selection. Additionally, 23S-like

rRNA was chosen as the experimental dataset for screening MSA tools of accurate strategy for

several reasons: firstly, the simulated datasets provide reference alignments, and we can com-

prehensively assess MSA tools based on aSP, Q, and TC scores. Among these metrics, aSP

quantifies the quality of sequence alignment by computing the average similarity score across

all sequence pairs. Q and TC provide a comprehensive assessment of alignment accuracy and

completeness relative to a reference alignment. MSA tools that incorporate multiple indicators

in their selection process tend to be more reliable. Secondly, compared with the simulated

CIPRES datasets, its multiple sub-datasets with varying similarities allow for the identification

of MSA tools less influenced by different similarities, ensuring broad applicability of the

screening results. And finally, compared to the 16S-like rRNA datasets, 23S-like rRNA pos-

sesses longer sequence lengths and more noticeable disparities in running time and memory

consumption among MSA tools, simplifying the decision-making process.

As sequencing technology has advanced, there has been a substantial increase in the length

and quantity of sequences for a single alignment process. The mt genome, approximately 16

kb in length, and the SARS-CoV-2 genome, spanning around 29 kb, highlight this trend, with

over 16 million SARS-CoV-2 genomes sequenced from 193 countries and regions as of July

2023. However, early-developed MSA tools face challenges when dealing with large-scale

alignment tasks. For instance, T-Coffee and Dialign-TX experience infinite running times

when aligning the SARS-CoV-2_20200301 sub-dataset containing 39 sequences. Although

T-Coffee, included in the accurate strategy, delivers high-quality alignment outcomes, its per-

formance is constrained when aligning extensive sequences, limiting the broad applicability of

the accurate strategy. Hence, we opted for the newly developed tools HAlign3, Kalign3,

MAFFT, and WMSA2 to create a fast strategy to produce initial alignments for large-scale

datasets as quickly as possible. The experimental results demonstrate that the four MSA tools

chosen via the fast strategy outperform those selected through the accurate strategy in terms of

TPMA_C9, TPMA_C5, TPMA_C4, M-Coffee_C9, and M-Coffee_C4 on the 16S-like and 23S-like rRNA sub-datasets. The

results represent the average value across the three replicates from each sub-dataset. C, D, Comparing aSP, Q, and TC

scores (10 replicates) for TPMA_C9, TPMA_C5, TPMA_C4, M-Coffee_C9, and M-Coffee_C4 on simulated CIPRES-128

and CIPRES-256 rRNA datasets, alongside a sequence similarity distribution histogram. The sequence similarity of each

replicate was similar within the dataset, and only one of the replicates’ sequence similarity distribution histograms was

plotted. The "NULL" indicates that TPMA-C9 and M-Coffee_C9 produced no results due to the infinite alignment time of

Dialign-TX. E-G, The aSP scores of TPMA_C9, TPMA_C5, TPMA_C4, M-Coffee_C9, and M-Coffee_C4 on the 16S

rRNA, HVS-II, and 23S rRNA datasets with the corresponding sequence similarity distribution histograms (only one

representative histogram was displayed). The 16S rRNA datasets have 8 replicates, while the HVS-II and 23S rRNA datasets

contain 10 replicates.

https://doi.org/10.1371/journal.pcbi.1011988.g004
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speed and suitability for large-scale data. Particularly when dealing with low sequence similar-

ity, HAlign3 may exhibit high memory usage, but this limitation can be mitigated by reducing

the number of parallel threads. Moreover, the decision to opt for four MSA tools in the fast

strategy, rather than a smaller selection, stems from the advantage it offers in facilitating effec-

tive comparisons on large-scale datasets compared to the accurate strategy. A smaller tool

selection could compromise the ability to make meaningful comparisons. Despite not being

part of the accurate strategy, Kalign3’s rapid aligning and minimal memory usage on large-

scale datasets align with the objectives of the fast strategy tailored for such datasets.

Materials and methods

The workflow of TPMA

TPMA requires two inputs: firstly, a set containing A1, A2,. . .,An (the initial alignments of the orig-

inal sequence dataset R by n MSA tools) and secondly, the original unaligned sequence dataset R.

The default output sequence order of MUSCLE3, MUSCLE5, and PCMA is based on the cluster-

ing of their guide tree, which often differs from the sequence order of the original dataset. Further-

more, when the original sequences contain characters other than the 26 uppercase and lowercase

English letters, MAFFT and MUSCLE3 will align the sequences after deleting these characters.

Therefore, TPMA mandates a meticulous examination of the initial alignments (Fig 6A).

Firstly, TPMA reorders the sequences in each initial alignment Ai to match the order of the

original dataset R and computes the sum of pairs (SP) score for each reordered alignment A0i.
Subsequently, the characters except for the 26 uppercase and lowercase English letters are

removed from the sequences in A0i and R, and then the consistency of each A0i with R is

checked. The alignments that differ from R will be deleted. In the end, we acquire a subset of

validated initial alignments, denoted as A0
1
;A0

2
; . . . ;A0m, where m�n.

Subsequently, we merged all validated initial alignments in descending order according to

the SP score. We first combine the two alignments A0
1

and A0
2

with the highest SP scores to get

Atmp1, then merge Atmp1 and A0
3

with the third highest SP score to obtain Atmp2, and continue

this process a total of m−1 times to generate the final alignment Afinal. Afinal combines blocks

with higher SP scores from the initial alignments, resulting in a refined alignment (Fig 6A.)

The combination of two initial alignments

Our research focuses on partitioning two initial alignments into block pairs with the same

sequence fragments, as depicted in Fig 6B, including the following three steps:

Recode the initial alignments

After checking the initial alignments, the sequences in all the remaining alignments are in the

same order but probably inserted with gaps in different positions. TPMA first recodes the

remaining alignments by mapping gaps to 0 and all the other characters to 1. This recoding

Fig 5. Comparative analysis of accurate and fast strategies. TPMA_C4 is derived from the merged alignment by combining the initial alignments obtained

through accurate strategy (ClustalW2, MAFFT, MUSCLE3, and T-Coffee), while TPMA_F4 results from that of the fast strategy (HAlign3, Kalign3, MAFFT,

and WMSA2). The time indicated the aggregate of the running time for the four MSA tools within the combined strategy. Meanwhile, the memory reflects the

highest memory consumption observed during the aligning process of the four MSA tools in the combined strategy. A-D aSP, Q, and TC scores of TPMA_C4

and TPMA_F4 on the 16S-like, 23S-like, simulated CIPRES-128 and CIPRES-256 rRNA datasets, along with the overall time and memory peak consumption

during acquiring all initial alignments. Each point in A and B represents the average value from three replicates within the sub-dataset of 16S-like and 23S-like

rRNA datasets. Meanwhile, both CIPRES rRNA datasets consist of 10 replicates. E-H aSP score of TPMA_C4 and TPMA_F4 on the 16S rRNA, HVS-II, 23S

rRNA, and mt genomes datasets with the time and memory of that required to obtain all initial alignments. The 16S rRNA, HVS-II, 23S rRNA, and mt genome

datasets comprised 8, 10, 10, and 4 replicates, respectively.

https://doi.org/10.1371/journal.pcbi.1011988.g005
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Fig 6. Operational mechanism and illustrative cases of TPMA. A Flowchart of TPMA. Unaligned sequences (R) are aligned using n MSA tools to generate n
initial alignments, and these initial alignments along with the R are fed into TPMA. TPMA checks the n initial alignments by sorting sequences, calculating SP

scores, and verifying for consistency, resulting in m valid initial alignments. The m valid initial alignments are combined in descending order of SP scores. A

total of m-1 combining steps are conducted to obtain the final alignment, denoted as Afinal. B Example of a detailed merging process for two initial alignments.

(i) Recode A0
1

and A0
2

as binary strings consisting exclusively of 0s and 1s. (ii) A0
1

and A0
2

are divided into blocks according to the bold column Ci (C1, C4, C10,

C11, C13 and C16 for A0
1
; C1, C4, C10, C11, C12 and C15 for A0

2
), which yields six pairs of blocks. Each of these block pairs consists of identical sequence fragments.

(iii) Compute the SP scores for these blocks, and then merge the blocks with higher SP values into Atmp1. Atmp1 encompasses sequences of length 15, structured

as follows: block C1 with identical scores, blocks C2−C4 from A0
2
, blocks C5−C10 from A0

1
, block C11 with the same score, block C12 from A0

2
, and finally, blocks

C13−C15 from A0
1
.

https://doi.org/10.1371/journal.pcbi.1011988.g006
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ensures that the base composition of each sequence becomes irrelevant, facilitating the identifi-

cation of gap insertion positions. As shown in Fig 6Bi, TPMA recodes A0
1

and A0
2

to obtain

binary strings consisting of only 0s and 1s.

Find the cutting sites

Two pointers, P1 and P2, independently traverse their respective recoded alignments and

simultaneously record their corresponding "pace," denoted by pace1 and pace2. The “pace” is

an array that records the cumulative count of "1"s scanned in each sequence up to the current

column. (Fig 6Bii). position1 and position2 respectively, keep track of the current column in the

alignments where pointers P1 and P2 are located. Initializing the arrays pace1 and pace2, both

with length is the number of sequences, to zero, and setting position1 and position2 to 0 indi-

cates that the two pointers are at column 0 and in their initial state.

Move a pointer arbitrarily. If P1 scans first, when the pace of P1 is greater (any number in

pace1 is greater than the corresponding number in pace2 in the same index) than that of P2,

P1 stops scanning and P2 starts to scan. Similarly, if the pace of P2 becomes greater than that

of P1, P2 stops scanning, and P1 continues to scan. Repeat this process alternately until both

pointers (P1 and P2) have scanned all the columns in their respective alignments. When the

pace is the same, the current columns (position1 and position2) of P1 and P2 represent the

cutting sites corresponding to the two alignments (the columns with the bold number in

Fig 6Bii). Assuming the sequence lengths of recoded Seq1 and Seq2 are n and m respectively,

where n is less than m, the time complexity of completing the finding cutting point algo-

rithm is O(max(n, m)), specifically O(n). The pseudocode for finding cutting sites is shown

in Algorithm 1.

Algorithm 1 Find the cutting sites
Input: two recoded alignments Seq1 and Seq2, both are DNA or RNA
sequences with the same sequence order.
Output: two lists of cutting sites L1 and L2
Function CUTTING_SITES (Seq1, Seq2)
Let L1 and L2 be the new lists

Let P1 and P2 be the two pointers of Seq1 and Seq2, respectively
Let pace1 and pace2 be the recording of the “pace” of P1 and P2,
Let position1 and position2 be the recording of the current positions
of P1 and P2, respectively
Let col1 be the columns count of Seq1, col2 be the columns count of Seq2
do{
for (position1! = col1 and pace2<pace1 = = FALSE)
if (++pace1 = = pace2)

L1.puch_back(position1)
L2.puch_back(position2)

end if
end for

for (position2! = col2 and pace1<pace2 = = FALSE)
if (++ pace2 = = pace1)

L1.puch_back(position1)
L2.puch_back(position2)

end if
end for

}while (position1! = col1 or position2! = col2)
return L1 and L2

end Function
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Choose superior blocks based on the SP score

According to all the identified cutting sites, the two initial alignments are partitioned into an equal

number of blocks, and the blocks containing identical sequence fragments are referred to as one

block pair. After calculating the SP score of each block pair, the block with the higher SP score is

merged into the combined alignment (Fig 6Biii). The SP score is calculated as shown in Eq 1.

SP ¼
XL

k¼0
f ðkÞ ð1Þ

The SP score is obtained by summing the scores of the L columns, where f(k) represents the

score of the k-th column, and L denotes the total number of columns in the block. The calculation

method for f(k) is shown in Eq 2.

f ðkÞ ¼
XN

i

XN

j6¼i
scoreði; jÞ ð2Þ

Here, N is the number of sequences in the block, and score(i, j) represents the score of aligned

pair in the i-th row and j-th row. If the aligned pair is matched (both characters are letters and

they are the same), a score of 1 is assigned. For mismatched pairs (both characters are letters but

different), a score of -1 is given. When one character is a letter and the other is a gap, a score of -2

is provided. Otherwise, a score of 0 is assigned.

Datasets

The experiments utilized ten nucleotide datasets, comprising six real datasets and four simu-

lated datasets (S1 Table). Challenges arose for certain Multiple Sequence Alignment (MSA)

tools, such as Dialign-TX [13] and T-Coffee [14], in aligning datasets with extended sequence

lengths or numerous sequences. We conducted multiple random samplings or partitioned the

real dataset to reduce its size, generating multiple sub-datasets as test datasets. This approach

helped eliminate the randomness and variability of the experimental results.

The six real datasets consist of five DNA datasets and one RNA dataset. (1) The human

mitochondrial (mt) genomes dataset comprised 672 human mitochondrial genomes, ranging

from a maximum length of 16579 bp to a minimum of 16556 bp [15]. We created sub-datasets

by randomly selecting 30 sequences without replacement, and this procedure was repeated

four times (S2 Table). (2) The hyper-variable segment II (HVS-II) dataset consisted of 100

sequences extracted from the HVS-II control region of the central European human mito-

chondrial genomes [16], retrieved from the GenBank database (accession numbers:

KF601094-KF601193). The dataset was subsequently partitioned into ten sub-datasets

(S3 Table). (3) The 16S ribosomal RNA (rRNA) dataset encompassed 108,413 DNA sequences

encoding RNA found in bacteria and archaea, with an approximate length of 1.5 kb [17]. We

created eight sub-datasets for this dataset, each containing 100 sequences sampled randomly

without replacement (S4 Table). (4) The 23S rRNA dataset encompassed 641 sequences of

Mycobacterium 23S rRNA, sourced from the SILVA rRNA database (http://www.arb-silva.de/

) for bacteria, archaea, and eukaryotes. Spanning lengths from 1909 to 3485 bp, these

sequences were partitioned into ten groups (S5 Table). (5) The respiratory syndrome coronavi-

rus 2 (SARS-CoV-2) is an RNA virus that causes the COVID-19 pandemic. Two datasets [18]

were derived from the GISAID website (https://www.gisaid.org, updated November 11, 2021.)

The SARS-CoV-2_20200301 datasets contain 156 sequences (29409 to 29927 bp) collected on

March 1, 2020, and were divided into four sub-datasets (S6 Table). (6) The SARS-CoV-

2_20200417 datasets feature 1020 sequences (29409 to 29927 bp) collected on April 17, 2020.

From this, we randomly selected 100 sequences without replacement to create a sub-dataset,

and this process was repeated four times (S7 Table).
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Two of the four simulated datasets were generated using hierarchical tree simulation to

obtain 16S-like and 23S-like rRNA datasets. This simulation was carried out using INDELible

v1.03 [19], and the substitution models were based on estimates obtained from 3000 16S

rRNA and 641 Mycobacterium 23S rRNA alignments (as previously mentioned), utilizing

IQ-TREE v2.2.0-beta [20]. One hundred 16S rRNA sequences and Mycobacterium 23S rRNA

sequences, randomly chosen from the datasets as mentioned above, were aligned to construct

the simulation trees. Subsequently, the process of generating the simulation 16S-like and 23S-

like datasets was rooted in these two simulation trees. Each tree’s branch length was assigned a

random value from 0 to 1 (NON-ULTRAMETRIC). The simulated sequence lengths were set

at 1.5 kb for 16S-like rRNA and 4 kb for 23S-like rRNA. The indel model parameter used was

LAV 5 50, with insertion and deletion rates of 0.01 and 0.1, respectively. To simulate datasets

with varying mean similarities, the tree length (sum of branch lengths) was adjusted to achieve

mean similarities of 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 85%, 80%, 75%, and

70%. The mean similarity represents the average of similarities between any two sequences

within the dataset (https://github.com/malabz/MSATOOLS/blob/main/length_similarity_

distribution/length_similarity_distribution.py), determined by the percentage of matched

characters in their pairwise alignments conducted using MAFFT. Detailed information

regarding these two sets of 14 sub-datasets can be found in S8 Table. Every sub-dataset

included three replicates, each containing 100 simulated sequences. The mean length is the

average of the average sequence lengths from the three replicates.

The remaining two datasets are simulated CIPRES-128 and CIPRES-256 rRNA datasets

evolved from the same root rRNA sequence on the trees featuring 128 and 256 taxa, respec-

tively (S9 Table). These datasets were downloaded from trials 1 to 10 on the CIPRES SIMULA-

TION DATA website (https://kim.bio.upenn.edu/software/csd.shtml). The simulation

parameters were adjusted to ensure that the simulated sequences mirror authentic small sub-

unit rRNA (ssu rRNA) sequences regarding sequence identity, indel count, the ratio between

substitutions and indels, and other relevant characteristics. The datasets were formatted in

NEXUS format. The Nexus to Fasta Sequence Convert tool (http://www.bugaco.com) was uti-

lized for conversion into FASTA format to obtain the reference sequences. Subsequently, gaps

were removed from the reference to derive the unaligned test datasets.

Sequence similarity is computed for every dataset as the ratio of matching base pairs in all

pairwise alignments (generated using MAFFT) within a sub-dataset. The script for this com-

putation is available on https://github.com/malabz/MSATOOLS/blob/main/length_

similarity_distribution/length_similarity_distribution.py. Lastly, employ Python’s Matplotlib

library to generate a histogram depicting the distribution of sequence similarity.

Software versions and operating parameters involved in this study

Furthermore, the experiment involved initial alignments obtained from eleven MSA tools:

ClustalW2 [21], Dialign-TX, HAlign3 [22], Kalign3 [23], MAFFT, MUSCLE3, MUSCLE5

[24], PCMA [25], POA[26], T-Coffee, and WMSA2[27]. The identical software versions and

running commands were used for obtaining initial alignments by TPMA and M-Coffee, with

detailed information provided in S10 Table. In addition, the running commands of TPMA

and M-Coffee merging the initial alignment from different MSA tools are shown in S11 Table.

Evaluation and experimental environment

When evaluating alignment quality for the six real datasets, we employed the average sum of

pairs (SP) score, denoted as aSP score, which represents the SP score divided by the number of

sequence pairs, for accuracy assessment. The penalty parameters remained consistent with
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those detailed in the Methods 4.2.3 section. Regarding the four simulated datasets, in addition

to the aSP score, we incorporated the Q score (the number of correctly aligned base pairs

divided by the aligned pairs in the reference) and the TC score (the number of correctly

aligned columns divided by aligned columns in the reference), both computed using the

qscore program (http://www.drive5.com/bench/), to gauge the deviation between alignment

outcomes and reference alignments. All experiments were conducted on a server running the

Ubuntu Linux operating system, equipped with an Intel(R) Xeon(R) Platinum 8168 CPU oper-

ating at a clock speed of 2.7 GHz and 1TB RAM.

Supporting information

S1 Fig. The aSP score of the combination by sequential merging of initial alignments from

MSA tools based on ranking by aSP, Q, and TC scores. The 14 subplots illustrate the results

of 23S-like rRNA sub- datasets with different similarities: 99%, 98%, 97%, 96%, 95%, 94%,

93%, 92%, 91%, 90%, 85%, 80%, 75%, 70%. The points on each subplot represent the averages

of three replicates. The aSP score-based ranking (the orange line) reveals that the Top 2 combi-

nation consists of T-Coffee and MUSCLE3, followed by the Top 3 combination of T-Coffee,

MUSCLE3, and MAFFT, and so forth for subsequent combinations. Regarding Q scores rank-

ing (the blue line), the Top 2 combination features T-Coffee and MUSCLE3, followed by the

Top 3 combination of T-Coffee, MUSCLE3, and ClustalW2, and so on. When ranked by TC

scores (the red line), the Top 2 combination consists of ClustalW2 and PCMA, with the Top 3

being ClustalW2, PCMA, and T-Coffee, and so forth.

(EPS)

S2 Fig. The Q score of the combination by sequential merging of initial alignments from

MSA tools based on ranking by aSP, Q, and TC scores. The plots depict the Q scores

obtained by merging different initial alignment combinations across 14 23S-like rRNA sub-

datasets. Each point displays the average of three replicates within the sub-dataset. The merged

process is the same as described in. S1 Fig legend.

(EPS)

S3 Fig. The TC score of the combination by sequential merging of initial alignments from

MSA tools based on ranking by average SP, Q, and TC scores. The TC scores from combin-

ing various initial alignment combinations across the 23S-like rRNA sub-datasets are shown

in the 14 subplots. These sub-datasets exhibit different similarities: 99%, 98%, 97%, 96%, 95%,

94%, 93%, 92%, 91%, 90%, 85%, 80%, 75%, 70%. All points on each subplot are the averages of

three replicates. The merging process follows the same steps as described in S1 Fig legend.

(EPS)
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