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A B S T R A C T

Multimodal sentiment analysis aims to judge the sentiment of multimodal data uploaded by the
Internet users on various social media platforms. On one hand, existing studies focus on the
fusion mechanism of multimodal data such as text, audio and visual, but ignore the similarity of
text and audio, text and visual, and the heterogeneity of audio and visual, resulting in deviation
of sentiment analysis. On the other hand, multimodal data brings noise irrelevant to sentiment
analysis, which affects the effectness of fusion. In this paper, we propose a Polar-Vector and
Strength-Vector mixer model called PS-Mixer, which is based on MLP-Mixer, to achieve better
communication between different modal data for multimodal sentiment analysis. Specifically,
we design a Polar-Vector (PV) and a Strength-Vector (SV) for judging the polar and strength
of sentiment separately. PV is obtained from the communication of text and visual features
to decide the sentiment that is positive, negative, or neutral sentiment. SV is gained from the
communication between the text and audio features to analyze the sentiment strength in the
range of 0 to 3. Furthermore, we devise an MLP-Communication module (MLP-C) composed
of several fully connected layers and activation functions to make the different modal features
fully interact in both the horizontal and the vertical directions, which is a novel attempt to
use MLP for multimodal information communication. Finally, we mix PV and SV to obtain a
fusion vector to judge the sentiment state. The proposed PS-Mixer is tested on two publicly
available datasets, CMU-MOSEI and CMU-MOSI, which achieves the state-of-the-art (SOTA)
performance on CMU-MOSEI compared with baseline methods. The codes are available at:
https://github.com/metaphysicser/PS-Mixer.

1. Introduction

With the popularity of social platforms (e.g. YouTube, Facebook), the task of sentiment analysis is now not limited to unimodal
ata but has been extended to multimodal data consisting of multiple sources of information, including visual, audio, and text.
he ability to extract users’ sentiment in multimodal data can help decision-makers to understand the past, predict the future, and
ake the right decisions. These sentiments can be broadly classified as positive, negative, or neutral. Multimodal sentiment analysis

MSA) (Balahur, Montoyo, Martínez-Barco, & Boldrini, 2012; Poria, Hazarika, Majumder, & Mihalcea, 2020) is useful in many aspects
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Fig. 1. Several approaches to multimodal fusion (Tensor-based, GAN-based, Attention-based and ours).

of life, including politics (Abbasi, Chen, & Salem, 2008), stock market prediction (Bollen, Mao, & Zeng, 2011), movie box office
revenue prediction (Romero, Galuba, Asur, & Huberman, 2011), customer feedback (Gamon, Aue, Corston-Oliver, & K.Ringger,
2005) and so on. By analyzing visual, audio, and text from people, it is possible to understand human sentiment communication
and open the way for more humanization in artificial intelligence (Martinez-Miranda & Aldea, 2005; Rubin & Kenneth, 1998).

Since the multimodal data is heterogeneous from one modality to another, it proposes a challenge that how to make full use
of the complementary information in each modality to work together for sentiment analysis. Although multimodal data can help
analyze users’ real sentiment from different perspectives such as visual perception, auditory rhythm, and so on, avoid the information
singularity of unimodal data, and improve modeling effect, the use of multimodal data also introduces heterogeneity between
different modal data, which increases the difficulty of semantic understanding and destroys the semantic integrity. Secondly, the
multimodal data brings a lot of noise unrelated to specific scenes and result in spending more effort on distinguishing the input
data, which increases the calculation amount of model training and reduces the efficiency of the model.

Existing methods can be divided into early fusion, late fusion, and hybrid fusion (Lecun, Bengio, & Hinton, 2015) according to
different fusion stages. The approaches of early fusion fuse the features immediately after the feature extraction. In Zadeh, Chen,
Poria, Cambria, and Morency (2017), the features of visual, audio, and text modality were first extracted and then the fusion vectors
for decision making were directly obtained by calculating the 3-fold Cartesian product. However, early fusion of features is not
only unable to fully fuse the useful information between different modalities but also brings a lot of redundant information, which
affects the learning efficiency of the model. Therefore, the Principal Component Analysis (PCA) (Sun, Wang, Xu, Zhang, & Balezentis,
2022) (Liu, Gui, Xiong, & Zhan, 2021) method is used to reduce the dimensionality of the data and remove the redundant information
from the data. In late fusion that is not affected by the distribution of the original data, the data of each modality are first computed
by their own unique pre-trained models and then the results of each model are fused into a final vector. For example, Yu, Xu, Yuan,
and Wu (2021) proposed a label generation module based on self-supervised learning to obtain labels for each individual modality
named self-mm, and a weight-adjustment strategy was designed to guide the subtask to focus on the more different sampling between
modalities. Late fusion is a better solution of fusing semantic information than early fusion, but the model structure becomes more
complex. Hybrid fusion combines early fusion and late fusion, allowing features to be fused at multiple stages of the model. For
example, in Sahu and Vechtomova (2021), the features of any two modalities (e.g., video and audio) were first fused and then the
features of the remaining modalities (e.g., text) were trained to obtain the final fusion vector. Kumar and Vepa (2020) proposed a
learnable gating mechanism to selectively learn cross attended features, which can control the transfer and discard of information
and use a self-attention mechanism to capture long-term context. Moreover, the vectors obtained by gating mechanisms were fitted
in a deep multimodal fusion module to obtain the final vectors for the analysis of sentiment states. It can significantly improve the
performance of the model by planning the stage of the fusion in the model.

As shown in Fig. 1, there are many fusion mechanisms that can be used to solve the heterogeneity challenges of multimodal
data, such as based on tensor fusion, based on Generative Adversarial Network (GAN), based on attention mechanism and so on. For
example, Zadeh et al. (2017) devised an early approach based on tensor fusion named TFN. It performed Cartesian product for fusing
the features of three modalities after dimensional expansion, and combined the features obtained from multimodal fusion with the
respective unimodal features for decision making which could retain not only each modality information but also all modalities
information. Although this method was relatively simple, it faced a huge amount of computation and memory consumption and the
number of model parameters also increases, which is prone to the risk of overfitting. Later, Liu et al. (2018) proposed a low-rank
multimodal fusion method called LMF by decomposing the tensors and weights in parallel to solve the problems of TFN, which could
reduce the number of parameters while improving the computational speed. Even though LMF has solved some problems of TFN,
LMF still led to the problem of parameter dramatic growth once the input feature dimension became large. Later methods based
on the GAN mechanism Mai, Hu, and Xing (2020) Tsai, Liang, Zadeh, Morency, and Salakhutdinov (2019) abandoned the direct
computation of features and adopted the idea of the two-player game, using the mutual confrontation of generator and discriminator
to gradually bring different modal features closer to each other. Mai, Hu, and Xing (2020) proposed a novel generative adversarial
network (GAN) based on a layered graphical neural network to achieve unification by learning the embedding space invariant with
modality and converting the distribution of the source modality to the distribution of the target modality. Although GAN exploits
reconstruction loss and classification loss to impose constraints on the embedding space, the possible collapse in training will lead to
unstable training. Later in the field of NLP, due to Transformer (Vaswani et al., 2017) used the multi-head attention mechanism to
improve the stable of model training, Zadeh, Liang, Mazumder, et al. (2018), Wang et al. (2019) Tsai, Bai, et al. (2019) and Su, Hu,

Li, and Cao (2020) tried to apply the attention mechanism to multimodal fusion. Zadeh, Liang, Mazumder, et al. (2018) proposed
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the Memory Fusion Network (MFN) approach to process multimodal sequence data for view-specific interactions and cross-view
interactions by interacting the information in the Delta-memory Attention Network (DMAN) module and Multi-view Gated Memory
module. Despite the progress made in the above approaches, these fusion methods were still subject to complex challenges due to
the heterogeneity between different modalities.

Recently, there are a number of studies focusing on multi-layer perceptron (MLP), such as MLP-Mixer (Tolstikhin et al., 2021),
2-MLP (Yu, Li, Cai, Sun, & Li, 2022), 𝑆2-MLPv2 (Yu, Li, Cai, Sun, & Li, 2021a), hire-MLP (Guo et al., 2022), ResMLP (Touvron et al.,

2021), CycleMLP (Chen, Xie, Ge, Liang, & Luo, 2022a), gMLP (Liu, Dai, So, & Le, 2021), VIP (Hou et al., 2021) and so on, which
confirmed that MLP can be comparable to the Transformer. Tolstikhin et al. (2021) firstly designed an architecture based on multi-
layer perceptrons (MLPs) named MLP-Mixer which consists of two parts. The first part applied MLPs to image patches individually
in order to mix features at each position, the other part used MLPs to cross patches, which could mix spatial information. In Chen
et al. (2022a), a CycleMLP Block to realize local features by aligning features at different spatial locations to the same channel
was designed, which achieved an accuracy of 83.2% and outperformed the Transformer-based models. Nie et al. (2021) removed
multi-head attention from the Transformer and replace it with MLP, then fed the bimodal data (visual and text) into a pure MLP
framework to achieve a similar result as the Transformer after pre-training, which successfully confirmed the feasibility of MLP on
fusing multimodal data. The positive effect of MLP in the multimodal field encourages us to apply MLP to multimodal sentiment
analysis.

In this paper, we propose a Polar-Vector and Strength-Vector mixer model (PS-Mixer) based on MLP for multimodal sentiment
analysis to achieve better communication between different modal data. Specifically, we design a Polar-Vector (PV) that determines
the polarity of the sentiment including positive, negative and neutral, and a Strength-Vector (SV) that decides the strength value of
sentiment between 0 and 3. In addition, we devise the MLP-Communication module that is able to communicate the input features
in both vertical and horizontal directions to reduce the interference of noise and facilitate multimodal interactions. Finally, we
propose a polar loss to determine sentiment direction and a strength loss to judge sentiment strength. Our experiments show that
PS-Mixer has reached the SOTA result on the CMU-MOSEI dataset, demonstrating the competitiveness of PS-Mixer on the task of
multimodal sentiment analysis.

The main contributions of this paper are as follows.

1. We propose a Polar-Vector and Strength-Vector mixer model called PS-Mixer, which is based on MLP-Mixer, to communicate
between different modalities features. With our designed MLP-Communicator (MLP-C), features can be communicated and
interacted in both vertical and horizontal directions. This is the first time that MLP has been used for a trimodal (visual,
audio and text) sentiment analysis task.

2. We design two judgments Polar-Vector (PV) and Strength-Vector (SV) to work together for the decision of sentiment
prediction. The PV indicates positive, negative or neutral sentiment. The SV expresses the sentiment strength in the range of
0 to 3.

3. We propose three loss functions: polar loss, strength loss and task loss to make the predicted sentiment more accurate
according to the multimodal data by measuring the gap between the predicted value of sentiment polarity, strength and
the true value.

4. We conduct extensive experiments and achieve SOTA performance for multimodal sentiment analysis compared with baseline
methods, especially on the seven classification task of CMU-MOSEI dataset with the accuracy of 86.1%. The experimental
result shows that the number of parameters of our proposed MLP-C module is 1.1M less than the Transformer module.

The remainder of this paper is organized as follows. Section 2 introduces sentiment analysis, multimodal feature extraction and
multi-layer perceptron. Section 3 explains the details of the proposed method. Section 4 presents the details of the experiments and
the evaluation results. Section 5 concludes the work.

2. Related work

The dramatic growth of multimodal data has led to the development of multimodal sentiment analysis. In this section, we
review the literature about sentiment analysis from unimodal to multimodal and analyze the methods they use. Then we introduce
the related work on multimodal feature extraction. Finally, we analyze the relevant background of the MLP field.

2.1. Sentiment analysis

Sentiment analysis is an important area of research in deep learning. From the beginning of the research to the present, sentiment
analysis task has expanded from unimodal to multimodal.

Initially, the sentiment analysis task focused on unimodal sentiment analysis such as textual sentiment analysis. Meng et al.
(2012) proposed a generative cross-lingual mixture model (CLMM) to maximize the likelihood of bilingual parallel data by parameter
fitting and determine the polarity of sentences in the parallel corpus by using words in the source and targeted languages. Li, Pan,
Jin, Yang, and Zhu (2012) designed a dual-domain adaptation framework to extract the exact words in the target domain without
annotation by generating some high-confidence sentiment in the target domain and proposed a Relational Adaptive bootstrapping
(RAP) algorithm to extend the seeds of the target domain by using labeled source domain data and the relationship between topic and
sentiment words. Jiang, Yu, Zhou, Liu, and Zhao (2011) developed an improved method based on target-dependence and context-

awareness to improve the performance of sentiment classification for tweet sentiment classification, especially for very short and
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ambiguous tweets. Although unimodal data could express the emotional state, it could not accurately predict the emotional state
due to the lack of multiple perspectives.

The visual and audio information in the video can also provide a rich sentiment state. Zhao et al. (2020) proposed a deep
isual Audio Attention Network (VAANet) to guide attention generation by integrating spatial, channel-wise and temporal attentions

nto 3D CNNs and 2D CNNs. Zhu, Chen, and Wu (2019) designed a noise cancellation framework based on a quality embedding
etwork to derive the corresponding stochastic gradient descent (SGD) optimization objective with variational inference and
onditional independence assumption, which can be generalized to other multimodal problems with labeled noise. Wang, Wu, and
oashi (2019b) devised a multiple attention fusion network (MAFN) consisting of two attention mechanisms by modeling human

entiment recognition mechanisms to dynamically extract representative sentiment features and automatically highlight different
odal features according to their importance. Ghaleb, Popa, and Asteriadis (2020) proposed a Multimodal Emotion Recognition
etric Learning (MERML) network to capture the complex relationships between two modalities and learn the potential space by

earning modality-specific metrics together for audio–video emotion recognition tasks is also scalable framework. Han, Zhang, Ren,
nd Schuller (2021) presented a new cross-modal emotion embedding framework (EmoBed) to improve the performance of existing
entiment recognition systems for exploring the knowledge of other auxiliary modalities by exploring the underlying semantic
entiment information under a shared recognition network and a shared sentiment embedding space. In contrast, bimodal data
re more conducive to increased data richness than unimodal data.

Some videos contain textual information that can also be involved in the analysis of sentiment. Arjmand, Dousti, and Moradi
2021) proposed a Transformer-Based Speech-Prefixed Language Model (TEASEL) for multimodal sentiment analysis which imple-
ented a Lightweight Attentive Aggregation module to generate an efficient spatial encoding. TEASEL could achieve the same level

f performance as spending a long time retraining the Transformer without training the full Transformer. Shenoy and Sardana (2020)
esigned a recurrent neural network architecture for sentiment analysis and sentiment detection in conversation, using a state GRU
sGRU) to model the interlocutor’s state, a context GRU (cGRU) to track the context of the conversation, an emotion GRU (eGRU) to
rack the participant’s sentiment state and a pairwise attention mechanism to combine related states for sentiment prediction. The
uman perception model emphasizes the importance of top-down integration, i.e. cognition affects perception. Paraskevopoulos,
eorgiou, and Potamianos (2022) proposed a feedback module named MMLatch that allowed modeling top-down cross-modal

nteractions between higher and lower level architectures. The architecture used a feedback mechanism in forward propagation
o capture top-down cross-modal interactions during network training and extracted high-level representations of each modality,
o mask sensory inputs. Hazarika, Zimmermann, and Poria (2020) designed a framework named MISA for learning mode-invariant
nd mode-specific representations by projecting each modality into two different subspaces to reduce the gap between modalities
nd capture modality. This method of learning modal invariant and modal characteristics was beneficial to the full exploitation of
ata from different modalities. Delbrouck, Tits, Brousmiche, and Dupont (2020) devised a Transformer-based model for sentiment
nalysis named TBJE which relied exclusively on attentional mechanisms and feedforward neural networks (FFN) to map global
ependencies between inputs and outputs. Sahu and Vechtomova (2021) proposed an adaptive fusion technique and two networks
amed automatic fusion network and GAN fusion network that aimed to efficiently model context from different modalities. Two
roposed networks could learn to compress information from different modalities while preserving the context and regularized
he learning potential space of a given context from complementary modalities. Compared with existing methods, the lightweight
daptive networks could better model the context in different modalities. Lian, Liu, and Tao (2021) devised a multimodal learning
ramework for conversational sentiment recognition called conversational Transformer network (CTNet), which used Transformer-
ased structure to model the interactions between multimodal features within and across modalities and a bidirectional GRU
omponent to model the bidirectional dependencies of context-sensitive and speaker-sensitive.

.2. Feature representation

As the raw data is often high dimensional and contains a lot of redundant information, the raw information can be very sparse. If
he raw data is fed into the model, it will result in a huge amount of calculations and inefficient model training. Therefore, the raw
ata needs to be extracted to feature before being fed into the model. Feature extraction is the process of reducing the dimensionality
f the original input data and recombining the features from the original data to facilitate subsequent tasks. Feature extraction can
e used to solve the following problems as mentioned by Guyon, Nikravesh, Gunn, and Zadeh (2006). Firstly, the original data is
ighly dimensional. Secondly, the original data contains too much redundant information. Thirdly, the original data is too sparse.
n the following, different feature extraction methods are applicated for different types of data.
1) Text
Since text is a natural language used by humans and lacks understanding by computers, features need to be extracted from text

or representing natural language. The traditional method of text feature extraction is one-hot encoding (Lucas, 2014), which was a
ethod for converting a word vector into a binary number by encoding the word vector with 0 and 1 so that each word vector had

ts own unique encoding. Although one-hot encoding solved the problem that machines could not handle discrete data, it ignored
he order of words, so it was not conducive to the semantic accuracy. One of the text feature extraction methods using neural
etworks is word2vec (Mikolov, Chen, Corrado, & Dean, 2013). The vector representation of each word could be obtained by the
ord2vec, and the semantical similar words would be close to each other, so the relationship between words could be represented.
wo sub models named CBOW (Continuous Bag-of-Word) and Skip Gram respectively were proposed in word2vec to predict the
urrent word with the following words and predicted the contextual words with the current word. Although word2vec considered

ontextual information, it could not solve the problem of multiple meanings of words because of the one-to-one relationship between
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words and word vectors. With the rise of Transformer in NLP, Devlin, Chang, Lee, and Toutanova (2019) proposed Bidirectional
Encoder Representations from Transformers (BERT). With the huge amount of pre-trained data and the unique training techniques,
which allowed BERT to learn features well. BERT designed a ‘‘masked language model’’ (MLM) for pre-training which randomly
replaced the token in each training sequence and then predicted the original word of the mask token. Through the BERT, a deep
bidirectional language representation was generated which incorporates contextual information.

2) Vision
Visual data includes images, videos and so on. For image data, the Convolutional Neural Networks (CNN) is commonly used

or feature extraction (Krizhevsky, Sutskever, & Hinton, 2012; Lecun et al., 1989). CNN is a deep neural network that consists of
ully connected layers, convolution layers and pooling layers and the latter two together form a feature extractor. The convolution
ayers extract specific image features through convolution kernels, which can be enhanced for specific features while reducing noise.
he pooling layer can down sample the feature map while retaining useful information. Because of its special shared convolutional
ernel, CNN can easily handle high-dimensional data and avoid too many parameters. However, the pooling layers may loss several
seful information, which is conducive to the reconstruction of image.

For video data, C3D Network (Tran, Bourdev, Fergus, Torresani, & Paluri, 2015) is a general purpose network that used 3D
onvolution. The 3D feature map was obtained after the 3D convolution operation. Since the 3D convolution had one more dimension
time dimension) than the 2D convolution, thus the obtained 3D feature map contained the timing information in the video. Although
3D Network was able to model the time information well, it had not the memory function for the input video as recurrent neural
etwork (RNN) do (Elman, 1990). The traditional RNN approach extracted all of the features without any processing of the input.
ut this would result that network memorized too much useless data, thus giving rise to the gated recurrent unit (GRU) (Cho
t al., 2014). GRU was able to solve the long-term dependency problem of sequences because of the using of gate mechanism for
ontrolling the transmission and loss of features. GRU combined the input gate and the forget gate proposed in LSTM (Hochreiter
Schmidhuber, 1997) into one gate called update gate which controlled how much information would be transmitted to the back.

nother gate was called reset gate which controlled how much information would be forgotten. Since GRU is able to selectively
emorize sequences, it is widely used for feature extraction of video data.
3) Audio
General audio feature extraction methods sample the original waveform, identifies the useful parts of the audio signal so that

acilitate the recognition of semantic information and discards the noise. The methods of audio feature extraction can be classified
y the different feature extraction processes, and there are the following methods. For example, the methods based on Zero Crossing
ate (ZCR) extract features directly from the original signal. The ZCR is the number of the speech signal passes through the zero
oint in each frame. ZRC has been widely used in the fields of speech recognition and it becomes the key feature for the classification
f tapped sounds. Although ZCR can clearly determine the starting and ending points of unvoiced sound, the statuses of unvoiced
ound and environmental noise are similar, thus it is not possible to distinguish them by ZCR. The other methods are based on
pectral Centroid which is a certain frequency range by energy-weighted averaging and it is with important information about
he distribution of frequency and energy of the sound signal. In the field of subjective perception, Spectral Centroid describes
he brightness of a sound. In addition, the Mel-scale Frequency Cepstral Coefficients (MFCCs) (Godino-Llorente, Gomez-Vilda, &
lanco-Velasco, 2006) have been at the advanced level. MFCCs used the advantages that humans have different perceptual abilities
or different frequencies of speech, and relates the pure tone frequencies to the actual measured frequencies, this allows the features
o be closer to what humans hear.

.3. Multi-layer perceptron

MLP was initially considered to have powerful representational capabilities in the field of computer vision (CV), but early MLP
raining was limited by the computational power of the devices. Later, as the computational power of devices gradually increased,
ore and more large-scale models appeared. The disadvantages of MLP requiring larger computational power was also solved, so
LP regained its popularity. Some recent work started to use a pure MLP framework for image classification tasks, which had

lso broadened the use scenarios of MLP. For example, Tolstikhin et al. (2021) proposed MLP-Mixer, which used MLP to replace
raditional convolution operations and attention mechanisms and applied them to image classification tasks. MLP-Mixer divided the
mages into non-overlapping patches and sent them to the MLP for fusion. MLP-Mixer proposed token-mixer and channel-mixer to
chieve information fusion in the spatial and channel domains, respectively. Although the MLP-Mixer framework is very simple,
t achieves about the same results as the Transformer-based model in image classification tasks. Due to the MLP framework is
imple in design and can replace the Transformer module, the feasibility of the MLP architecture in the computer vision field is
erified. A series of MLP-based models such as S2MLP (Yu et al., 2022), s2mlpv2 (Yu et al., 2021a), ResMLP (Touvron et al.,
021), Hire-MLP (Guo et al., 2022), CycleMLP (Chen et al., 2022a)and GFNet (Zhou, Chen, Liu, & Yu, 2020) had been generated
fter MLP-Mixer, all of them are continuously improving the performance and even reaching the result of SOTA. Yu et al. (2022)
roposed a spatial-shift framework called S2-MLP based on MLP. Unlike MLP-Mixer, S2-MLP contained only channel-mixer. S2MLP
esigns spatial-shift to implement the communication between different patches. Specifically, the spatial-shift operation first divided
he feature into 4 groups by channel, then the first group was shifted horizontally right by one unit, the second group was shifted
orizontally left by one unit, the third group was shifted forward by one unit, and the fourth group was shifted backward by one
nit. Spatial-shift was a fixed operation without parameters, which could be achieved by a simple assignment of values. This moved
eatures which are at different locations to the same channel. Then a 1 × 1 convolution is performed to fuse the information within
receptive field to achieve the communication between different patches.
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Fig. 2. PS-Mixer consists of three components: feature extraction, modality communication, and sentiment fusion. The feature extraction component generates
hree kinds of low-dimensional features (visual, audio and text). The modality communication component is used to generate two sentiment scales. The sentiment
usion component fuses two sentiment scales for the classification task.

As substantial results were achieved on the unimodal data, the attention of scientists was turned to the multimodal data. The
LP framework for vision-and-language (VL) fusion was first investigated in Nie et al. (2021). The paper replaced the multi-head

ttention in Transformer with MLP in order to compare the effects of multi-head attention and MLP. The results were not good
nough because they were not trained by using large-scale data. However, when the model was pre-trained with large-scale data,
he accuracy improved by 5.73%, competitive to the performce of Transformer. This professes that MLP can replace the Transformer
ased on a large amount of pre-training, and the Transformer module is not necessary. It also proves that MLP is effective in
ultimodal fusion. Inspired by this paper, we decide to propose an MLP-based sentiment analysis model applied to the multimodal

ield.

. Methodology

.1. Overview of the framework

In this paper, the proposed method uses the MLP framework to fuse multi-modal data, two scales are generated to determine the
irection and strength of the sentiment respectively, then combines two sentiment scales in the sentiment fusion module and output
ecision result. As shown in Fig. 2, our model contains three main modules: feature extraction module, modality communication
odule and sentiment fusion module. The feature extraction module is applied to extract multi-modal raw data into three specific

ow-dimensional vectors representation. The modality communication module is used to interact information between modalities
nd obtain two different sentiment scales (polarity and strength). Finally, the multi-modal fusion module is set to combine two
revious obtained sentiment scales and takes them for the sentiment classification task. The detailed description is provided in the
ollowing sections.

.2. Feature extraction

The first module of PS-Mixer is feature extraction. In this module, we take pre-trained models (BERT, OpenFace and COVAREP)
o perform feature extraction for visual, audio and text data (Baltrusaitis, Robinson, & Morency, 2016; Degottex, Kane, Drugman,
aitio, & Scherer, 2014; Devlin et al., 2019). The features generated are used to perform the subsequent multimodal communication.
he function of the feature extraction module can be segmented into two main stages: feature extracting and feature embedding.
n the stage of feature extracting, pre-trained models are applied to extract features from the raw video files to generate features
ith different dimensions. During the feature embedding stage, we project three modalities features into the same dimension to get

he higher-quality information and the lower computation complexity. With our proposed feature extraction module, we are able
o convert multimodal information into low-dimensional features for using in subsequent modules.

.2.1. Visual and audio feature
According to the description of the official dataset, Openface and COVAREP are used to extract visual and audio features,

espectively.
As for Openface, the first step is to find all the faces using the Histogram of Oriented Gradient (HOG) algorithm (Dalal & Triggs,
005) (Chen, Zhao, Chan, & Kong, 2022b; Petsiuk & Pearce, 2022). Openface segments the image into numerous small squares. Then,
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Fig. 3. Flowchart on how openface generates facial landmark. First, the input image is obtained, then the face is detected and circled. Finally the facial landmark
is drawn based on the circled face.

Fig. 4. The general flow of processing audio data. Firstly, the audio features need to be extracted. COVAREP calculates dozens of audio features such as
eakSlope, QQQ and MDQ. Then, these features are stacked together to get the processed data.

t calculates how many points there are in each main direction (point up, point right up, point right, etc.) and replaces the original
ne with the strongest points. The result is that the original image is converted into a very simple representation to capture the basic
tructure of the face. The second step is to perform facial landmark estimation using an ensemble of regression trees (ERT) (Valle,
uenaposada, Valdés, & Baumela, 2019) on the feature points of the face. The specific flow of facial landmark is shown in Fig. 3.
he third step is to encode the face. In this step, a deep convolutional neural network is trained to generate features for the faces.
hree faces will be observed during training, the first one is a known face, the second one is a face of the same people, and the
hird one is a face of different people. The features generated by training the network, so that these features enable the faces of the
ame person to be as close as possible and the pictures of different people to be as far away as possible.

For audio, the feature extraction module uses a speech processing tool COVAREP, which can extract not only some basic speech
eatures, such as frame energy, fundamental frequency, short-time jitter parameters, but also important speech sentiment feature
arameters, such as Mel-scale Frequency Cepstral Coefficients (MFCCs). All features are normalized using zero-mean and variance
ormalization, and the segment without audio information is set to zero. The general flow of COVAREP processing audio data is as
ollows. After inputting audio data, COVAREP calculates dozens of audio features such as peakSlope, QQQ and MDQ. These features
re stacked together to get the processed data, as shown in Fig. 4. After the above operation, high-quality audio features 𝑆𝑎 can be

obtained.
Bidirectional LSTM (BiLSTM) considers both forward and backward information to better capture two-way semantic dependen-

cies. BiLSTM is a combination of forward LSTM and backward LSTM and it can concatenate the hidden states of the two LSTMs as
the representation of each position. The forward and backward LSTMs are formulated as the following Eqs. (1) and (2):

𝑐𝑡, ℎ⃗𝑡 = 𝑔𝐿𝑆𝑇𝑀
(

𝑐𝑡−1, ℎ⃗𝑡−1,𝑊𝑡

)

(1)

⃖⃖𝑐𝑡, ⃖⃖ℎ𝑡 = 𝑔𝐿𝑆𝑇𝑀
(

⃖⃖𝑐𝑡+1, ⃖⃖ℎ𝑡+1,𝑊𝑡

)

(2)

where the parameters in the two LSTMs are shared. The 𝑔𝐿𝑆𝑇𝑀 denotes the one-way LSTM, the arrow denotes the direction of the
one-way LSTM, → denotes the running process of the forward LSTM, and ←denotes the running process of the backward LSTM. The
hidden states ℎ⃗𝑡 and memory cell 𝑐𝑡 of the current state are generated from the states ℎ⃗𝑡−1 and 𝑐𝑡−1 of the previous time. Each current
state (ℎ⃗𝑡) will only consider the forward context and not the backward context. To solve the problem that LSTM can only capture
one-way information, BiLSTM combines two directions of LSTM, which can consider forward and backward contextual information
and better capture bidirectional semantic dependencies. At each current position, the representation of hidden states is ℎ = ℎ⃗

⨁ ⃖⃖ℎ ,
𝑡 𝑡 𝑡
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Fig. 5. The framework for the implementation of MLP-Communicator consisting of several fully connected layers as well as activation functions (GELU).

which is a concatenation of the hidden states of the forward LSTM and backward LSTM. In this way, the forward and backward
contexts can be considered simultaneously.

𝑈𝑎 = 𝑠𝐿𝑆𝑇𝑀
(

𝑆𝑎; 𝜃𝑎
)

(3)

𝑈𝑣 = 𝑠𝐿𝑆𝑇𝑀
(

𝑆𝑣; 𝜃𝑣
)

(4)

The audio feature 𝑆𝑎 ∈ R𝑇𝑎×𝑑𝑎 and visual feature 𝑆𝑣 ∈ R𝑇𝑣×𝑑𝑣 are the original feature we used, where 𝑇 × 𝑑 means feature
imensions, fixed-sized vector 𝑈 is what 𝑆 produces. 𝜃 is separate parameter for each modality. For audio and visual modalities,
e apply the stacked bi-directional Long Short-Term Memory (sLSTM) to exact visual and audio feature. The final output 𝑈𝑎 ∈ R𝑑ℎ

nd 𝑈𝑣 ∈ R𝑑ℎ , the entire sentence representation is processed by the sLSTM network and an embedding layer sequentially.

.2.2. Text feature
Bidirectional Encoder Representations from Transformers (Bert) is a pre-trained model for the NLP field. BERT uses the

ransformer Encoder model as the language model, completely abandoning the RNN and CNN structure and using the attention
echanism to establish long-term dependence. BERT uses multi-head attention to perform self-attention on the input, and the

ubsequent feed forward operation performs a nonlinear transformation on the vector after the self-attention. Recently, Bert has
een used in sentiment analysis as the text feature extractor and has an excellent performance. This model comprises 12 stacked
ransformer layers that gives the final output 𝑈𝑡 ∈ R𝑑ℎ for the raw sentence 𝑆𝑡 ∈ R𝑇𝑚×𝑑𝑚 .

𝑈𝑡 = 𝐵𝐸𝑅𝑇
(

𝑆𝑡; 𝜃𝑡
)

(5)

.3. Modality communication

In the modal communication module, the proposed method uses text feature as the reference vector, lets visual feature, audio
eature communicate with text feature, respectively. And our proposed MLP-Communicator (MLP-C) generates two vectors called
olar-Vector (PV) and Strength-Vector (SV) to help determine the polarity and strength of sentiment. Specifically, the text and
isual features generate PV through MLP-C to determine the direction of the sentiment, and the text and audio features generate
V through MLP-C to determine the strength of the sentiment.

Specifically, Given the audio, visual and text feature for modality 𝑚 ∈ {𝑎, 𝑣, 𝑡}, we learn the polarity and strength representations
mploying the encoding functions.

ℎ𝑝𝑡 , ℎ
𝑝
𝑣 = 𝐸𝑝

(

𝑈𝑡; 𝑈𝑣; 𝜃𝑝
)

(6)

ℎ𝑠𝑎, ℎ
𝑠
𝑡 = 𝐸𝑠

(

𝑈𝑎; 𝑈𝑡; 𝜃𝑠
)

(7)

he ℎ𝑝𝑡 , ℎ
𝑝
𝑣, ℎs𝑎𝑎𝑛𝑑ℎ

s
𝑡 represent the vectors that contain each modal features information. They are generated through simple feed-

orward neural layers 𝐸 which is composed of linear layers and sigmoid activation functions. The superscript 𝑝 indicates that it is
sed to determine the polarity, similarly, 𝑠 indicates that it is used to determine the intensity. Both 𝜃 are parameters shared between
wo modalities.

.3.1. MLP-communicator
Attention-based networks such as ViT (Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer,

eigold, Gelly, Uszkoreit, & Houlsby, 2021) and BERT achieved unparalleled success in all nearly NLP and visual tasks. Recently,
ixer and ResMLP show the potential of MLP architecture that could replace convolutional and attention blocks in numerous fields.

Based on MLP-Mixer architecture (Tolstikhin et al., 2021), the MLP-Communicator we proposed consists of several identical
ayers, which contains two MLP blocks: Time-mixing MLP and Modality-mixing MLP, as shown in Fig. 5. Modality-mixing MLP
ffects the modality dimension of the input feature, allowing different modalities to communicate with each other, time-mixing
LP has the same effect on the time dimension.
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As a result, information could flow across different modalities and time sequences. Each block is composed of two MLP layers, and
ne GELU activation function (described as 𝛷). Additionally, skip connection is also applied in each block. Suppose that 𝑋 ∈ R𝑡×𝑑 is

an input feature, where 𝑡 is the length of time sequences and 𝑑 is the number of modalities. In each layer, the MLP-Communicator
module could be represented as the following:

𝐙∗,𝑖 = 𝐗∗,𝑖 +𝐖2𝛷
(

𝐖1Norm(𝐗∗,𝑖)
)

(8)

𝐘𝑗,∗ = 𝐙𝑗,∗ +𝐖4𝛷
(

𝐖3Norm(𝐙𝑗,∗)
)

(9)

where 𝑖 ranges from 1 to 𝑑 indicates the number of rows, and 𝑗 ranges from 1 to 𝑡 indicates the number of columns. Norm() denotes
LayerNorm and W represents the weights of the linear layer in each block. The input feature 𝑋 first passes through Modality-Mixing
MLP and generates 𝑍 though skip connection, this step allows the communication of features in the horizontal pairs. Then 𝑍 follows
Time-Mixing MLP to generate 𝑌 , the features are fused in the longitudinal direction. The final obtained feature 𝑌 fuses features from
two directions. This structure allows each element in the input features could interact with other features along the two dimensions.

3.3.2. Sentiment scale
Generally, text and audio modalities have a stronger correlation with sentiment strength and sentiment polarity. We project three

feature vectors into two representations. One is the sentiment direction component that captures the polarity of sentiment whether
is positive, negative or neutral. The other is the sentiment strength component that learns the power of sentiment.

We stack modality representations ℎ𝑝𝑡 and ℎ𝑝𝑣 into a matrix 𝑃𝑉 = [ℎ𝑝𝑡 , ℎ
𝑝
𝑣] ∈ R2×𝑑ℎ , and apply the same method on ℎ𝑠𝑡 and ℎ𝑠𝑎 to

make a similar matrix 𝑆𝑉 = [ℎ𝑠𝑡 , ℎ
𝑠
𝑎] ∈ R2×𝑑ℎ .For modality communication, we take text vector as reference vector and apply the

MLP-Communicator for these representations. Finally, we acquire 𝑃𝑚 that representing the polarity of sentiment and 𝑆𝑚 represents
the strength of sentiment:

𝑃𝑚 = 𝐵𝑁 (𝑀𝐿𝑃 − 𝐶 (𝑃𝑉 , 𝜃𝑝)) (10)

𝑆𝑚 = 𝐵𝑁 (𝑀𝐿𝑃 − 𝐶 (𝑆𝑉 , 𝜃𝑠)) (11)

where, 𝐵𝑁 is the Batch Normalization function. The algorithm of 𝑀𝐿𝑃 − 𝐶 can be found in Section 3.3.1. The parameters 𝜃𝑝 and
𝜃𝑠 are the weights of linear layers in 𝑀𝐿𝑃 − 𝐶.

3.4. Modality fusion and prediction

3.4.1. Fusion
After projecting the modalities into their respective sentiment scales, we fuse them into a comprehensive vector for final

prediction by extracting the direction of the polar vector and the scale of the strength vector. We construct a joint vector using
simple multiplication. The direction of the polar vector and the length of the strength vector are multiplied as follow:

𝐹 = ‖𝑆‖1 ×
𝑃

‖𝑃‖2
(12)

where vector 𝑃 ∈ R2𝑑ℎ consists of one-dimensional vector by splicing the first and second rows of matrix 𝑃𝑚 ∈ R2×𝑑ℎ and vector
∈ R2𝑑ℎ is the same situation. The ‖𝑃‖2 denotes the 2-Norm of P, it contains information about the length of P, so 𝑃

‖𝑃‖2
can be

interpreted as a unit vector of P, containing only directional information, with unit length. Similarly, ‖𝑆‖1 denotes the 1-Norm of S
which can be interpreted as the value of S. The product of the direction of sentiment and the value of sentiment, F, represents the
final sentiment score.

3.4.2. Prediction
As for the seven classification task, the predicted values we obtain are grouped between −3 and 3 to represent the strength of the

seven sentiments (−3,−2,−1, 0, 1, 2, 3). As for the binary classification task, the predicted values are classified as positive number and
negative number, which are used to represent two sentiment direction(positive and negative). The final predicted out is generated
by the output-head �̂� = 𝐺 (𝐹 , 𝜃o) that consists of a linear layer with a ReLU activation which is expressed in the equation as G().

3.5. Objective functions

The overall learning of the model is performed by minimizing loss function:

 = 𝛼𝑡𝑎𝑠𝑘 + 𝛽𝑝𝑜𝑙𝑎𝑟 + 𝛾𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (13)

where 𝛼, 𝛽, 𝛾 are the weights which decide the contribution of each regularization component to the total loss . We discuss them
next.
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Table 1
Description of TP,TN,FP,FN. The letters T and F in the table stand for true and false. The letters
P and N stand for positive and negative predicted results. TP means that both predicted and true
values are positive, TN means that both predicted and true values are positive, FP means that
the true value is negative but the predicted value is positive, and FN means that the true value
is positive but the predicted value is negative.

Predicted class

Class (Yes/+ ) Class (No/-)

Actual class Class (Yes/+ ) TP PN
Class (No/-) FP TN

3.5.1. 𝑝𝑜𝑙𝑎𝑟 - Polar loss
The polar loss helps the sentiment polarity to be more accurate. Minimizing it could improve the accuracy of the binary

lassification directly. In the process of training, we calculate the Cosine Similarity between predicted mean polar vector and true
ean polar vector as 𝑝𝑜𝑙𝑎𝑟. We calculate the distance between the polar vector that is predicted to be positive and that the label is

positive. After doing the same for the negative vectors, the weighted sum of them is used as the Polar Loss. so the 𝑝𝑜𝑙𝑎𝑟 is computed
as follows:

𝑝𝑜𝑙𝑎𝑟 = 1 −𝑤1 ⋅ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
(

𝒑+, 𝒕+
)

−𝑤2 ⋅ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝒑−, 𝒕−) (14)

where 𝑤1 and 𝑤2 is the weight of positive and negative cosine similarity, and 𝒑 is the vector of predicted result and 𝒕 is the vector
of true label. The superscript + and - indicates positive numbers and negative numbers. The 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦() is expressed as the formula
for calculating the cosine similarity. Maximizing 𝑤1 ⋅ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

(

𝒑+, 𝒕+
)

and 𝑤2 ⋅ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝒑−, 𝒕−) can minimize the 𝑝𝑜𝑙𝑎𝑟.

3.5.2. 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ - Strength loss
Minimizing the strength loss could help the sentiment strength close to the true value. We compute the correlation coefficient

distance as 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ between ‖𝑆‖1, which is the value of strength and the absolute value of the true labels.
The correlation coefficient distance used to calculate the distance between 𝑋 and 𝑌 is defined as follows:

𝐷𝑐𝑜𝑟𝑟 (𝑋, 𝑌 ) = 1 −
𝐶𝑜𝑣 (𝑋, 𝑌 )

√

𝑉 𝑎𝑟 (𝑋)𝑉 𝑎𝑟 (𝑌 )
(15)

So the 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ is computed as:

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 𝐷𝑐𝑜𝑟𝑟
(

|

|

𝑦𝑡𝑟𝑢𝑒|
|

, ‖𝑆‖1
)

(16)

where |

|

𝑦𝑡𝑟𝑢𝑒|
|

denotes the absolute value of true labels. ‖𝑆‖1 denotes the value of the prediction. Minimizing the correlation coefficient
distance between them, i.e. 𝐿𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ, can make the predicted values closer to the true values.

3.5.3. 𝑡𝑎𝑠𝑘 - Task loss
The task-specific loss estimates the quality of prediction during training. We use the mean squared error (MSE) loss. For 𝑁

sequences in the training data, 𝑡𝑎𝑠𝑘 is calculated as follows:

𝑡𝑎𝑠𝑘 = 1
𝑁

𝑁
∑

𝑖=0
‖𝑦𝑖 − 𝑦𝑖‖

2
2 (17)

where 𝑁 is the number of training samples, 𝑦𝑖 and 𝑦𝑖 are the true label and predicted label. Minimizing 𝐿𝑡𝑎𝑠𝑘 reduces the gap
between the predicted and true values.

4. Experiments

4.1. Datasets

We have conducted the experiments on two public datasets, CMU-MOSI (Zadeh, Zellers, Pincus, & Morency, 2016) and
CMU-MOSEI (Zadeh, Liang, Poria, Cambria, & Morency, 2018a), which provide word-aligned multi-modal features for raw data.

4.1.1. CMU-MOSI
The Multimodal Corpus of Sentiment Intensity (CMU-MOSI) dataset (Zadeh et al., 2016) is a popular benchmark that commonly

used in the multi-modal sentiment analysis. MOSI dataset is a collection of 2199 opinion video clips. Each opinion video is annotated
with sentiment in the range [−3,3], which represents strongly negative/positive sentiment. The dataset is rigorously annotated with
labels for subjectivity, sentiment strength, per-frame and per-opinion annotated visual features, and per-milliseconds annotated

audio features.
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4.1.2. CMU-MOSEI
The CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) dataset (Zadeh et al., 2018a) is the largest dataset

f multimodal sentiment analysis and emotion recognition. The dataset contains more than 23,500 sentence utterance videos from
ore than 1000 online YouTube speakers. The dataset is gender balanced. All the sentences utterances are randomly chosen from

arious topics and monolog videos. The videos were transcribed and properly punctuated. The MOSEI dataset is an improvement
ver MOSI with a higher number of utterances, greater variety in samples, speakers, and topics.

.2. Baselines

There has been a lot of works conducted in the field of sentiment analysis, especially in the area of multimodal sentiment analysis.
s described in Section 2, these approaches can be classified according to different fusion mechanisms, such as tensor-based fusion
pproaches, GAN-based and attention-based mechanisms, among others. We have conducted a comprehensive comparative study of
S-Mixer, and the baselines of our study are listed below.

1. Models based on tensor fusion. Tensor Fusion Network for Multimodal Sentiment Analysis (TFN) (Zadeh et al., 2017),
Efficient Low-rank Multimodal Fusion With Modality-Specific Factors (LMF) (Liu et al., 2018), Locally Confined Modality
Fusion Network With a Global Perspective for Multimodal Human Affective Computing(LMFN) (Mai, Xing, & Hu, 2020),
Divide, Conquer and Combine: Hierarchical Feature Fusion Network with and Global Perspectives for Multimodal Affective
Computing (HFFN) (Mai, Hu, & Xing, 2019).

2. Models based on Generative Adversarial Network. Modality to Modality Translation: An Adversarial Representation
Learning and Graph Fusion Network for Multimodal Fusion (ARGF) (Mai, Hu, & Xing, 2020), Dynamic Fusion for Multi-
modal Data (Sahu & Vechtomova, 2021), Speaker-invariant Affective Representation Learning via Adversarial Training (Li,
Tu, Huang, Narayanan, & Georgiou, 2020a), Adversarial Multimodal Representation Learning for Click-Through Rate
Prediction (Li, Wang, et al., 2020), Learning Factorized Multimodal Representations Tsai, Liang, et al. (2019).

3. Models based on attention mechanisms. Memory Fusion Network for Multi-View Sequential Learning (MFN) (Zadeh,
Liang, Mazumder, et al., 2018), Words Can Shift: Dynamically Adjusting Word Representations Using Nonverbal Behaviors
(RAVEN) (Wang et al., 2019), Multimodal Transformer for Unaligned Multimodal Language Sequences (MulT) (Tsai, Bai,
et al., 2019), Multimodal Split Attention Fusion (MSAF) (Su et al., 2020), Hierarchical Delta-Attention Method for Multimodal
Fusion (Panchal, 2020), Attention Is Not Enough: Mitigating the Distribution Discrepancy in Asynchronous Multimodal
Sequence Fusion (Liang, Lin, Feng, Zhang, & Lv, 2021).

4. Models based on Graph-based fusion. Multimodal Language Analysis in the Wild: CMU-MOSEI Dataset and Interpretable
Dynamic Fusion Graph (Graph-MFN) (Zadeh et al., 2018a), Graph Completion Network for Incomplete Multimodal Learning in
Conversation (GCNet) (Lian, Chen, Sun, Liu, & Tao, 2022), Analyzing Unaligned Multimodal Sequence via Graph Convolution
and Graph Pooling Fusion (Mai, Xing, He, Zeng, & Hu, 2020), Graph Capsule Aggregation for Unaligned Multimodal
Sequences (Wu, Mai, & Hu, 2021), Modality to Modality Translation: An Adversarial Representation Learning and Graph
Fusion Network for Multimodal Fusion (ARGF) (Mai, Hu, & Xing, 2020).

5. Models based on time series. Memory Fusion Network for Multi-view Sequential Learning (MFN) (Zadeh, Liang, Mazumder,
et al., 2018), Multi-attention Recurrent Network for Human Communication Comprehension (MARN) (Zadeh, Liang, Poria,
Vij, et al., 2018), Extending Long Short-Term Memory for Multi-View Structured Learning (MV-LSTM) (Rajagopalan, Morency,
Baltrusaitis, & Goecke, 2016), Multimodal Language Analysis with Recurrent Multistage Fusion (RMFN) (Liang, Liu, Zadeh,
& Morency, 2018).

6. Models based on gating mechanism. Gated Mechanism For Attention Based Multimodal Sentiment Analysis (GATE) (Kumar
& Vepa, 2020), Multi-modal Sequence Fusion via Recursive Attention for Emotion Recognition (Beard et al., 2018),
Multimodal sentiment analysis based on feature fusion of attention mechanism-bidirectional gated recurrent unit (Xuemei,
Hong, Hongyu, & Shanshan, 2021).

7. Models based on Multi-tasking. Context-aware Interactive Attention for Multi-modal Sentiment and Emotion Analy-
sis (Chauhan, Akhtar, Ekbal, & Bhattacharyya, 2019), Multi-task Learning for Multi-modal Emotion Recognition and
Sentiment Analysis (Akhtar et al., 2019), Complementary Fusion of Multi-Features and Multi-Modalities in Sentiment
Analysis (Chen, Luo, Xu, & Ke, 2020), Weakly-supervised Multi-task Learning for Multimodal Affect Recognition (Dai,
Cahyawijaya, Bang, & Fung, 2021).

.3. Evaluation metrics

In order to make a comprehensive evaluation on PS-Mixer model, various standard measures like mean absolute error (MAE) and
earson correlation (Corr) are used. Additionally, the benchmark also has a classification index with seven-class accuracy (Acc-7),
inary accuracy (Acc-2) and F-score.

Prec = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(18)

Rec = 𝑇𝑃 (19)

𝑇𝑃 + 𝐹𝑁



H. Lin et al.

t
t
t

Table 2
Performances of multimodal models in MOSEI. In Acc-2 and F1-Score, the left of the ‘‘/’’ is calculated as ‘‘negative/non-negative’’
and the right is calculated as ‘‘negative/positive’’. The upward arrow indicates that the higher this indicator is, the better it is,
and the downward arrow is the opposite.
Models MAE (↓) Corr (↑) Acc-2 (↑) F-score (↑) Acc-7 (↑)

LMF 0.623 0.677 82.0 82.2 48.0
LMFN – – 80.85 80.92 –

ARGF – – – – –
MFM 0.568 0.717 84.4 84.3 51.3

RAVEN 0.614 0.662 79.1 79.5 50.0
MuIT 0.630 0.664 80.1 80.9 49.0
MSAF 0.559 0.738 85.5 85.5 52.4
MICA – – 83.7 83.3 52.4

Graph-MFN 0.710 0.540 76.9 77.0 45.0
Multimodal Graph 0.608 0.675 81.4 81.7 49.7
GraphCAGE 0.609 0.670 81.7 81.8 48.9

MFN 0.612 0.687 80.6 80.0 49.1
MV-LSTM – – 76.4 76.4 –

GATE – – 81.14/85.27 78.53/84.08
AMF-BiGRU – – 78.48 78.16 –

CIA 0.680 0.590 80.4 78.2 50.1
CIM-MTL – – 80.5 78.8 –
DFF-ATMF – – 77.1 78.3 –

PS-Mixer 0.537 0.765 83.1/86.1 83.1/86.1 53.0
𝛥 SOTA ↓ 0.022 ↑ 0.027 ↑ 0.61 ↑ 0.61 ↑ 0.6

The precision and recall are computed using Eqs. (18) and (19). Precision is the ratio of correctly predicted positive observations
o the total predicted positive observations. Recall is the ratio of correctly predicted positive observations to the observations in
he actual class (Yes / +). As shown in Table 1, these measures can be interpreted as follows. TP means ‘‘True Positive’’ - these are
he correctly predicted positive values, which means that the value of the actual class is (Yes / +) and the value of the predicted

class is also (Yes / +). FP means ‘‘False Positive’’ - when the actual class is (No / -) and the predicted class is (Yes / +). TN, ‘‘True
Negatives’’ - these are the correctly predicted negative values, which means that the value of actual class is (No / -) and value of
the predicted class is also (No / -). FN, ‘‘False Negatives’’ - when the actual class is (Yes / +) but the predicted class is (No / -).

There is an anti-correlation between precision and recall. It means that the recall drops when the precision rises and vice versa.
In other words, a system that attempts for recall gets lower precision, and a system that attempts for precision gets a lower recall.
To consider the two metrics together, a single measure, called F-measure, is used. F-measure is a statistical measure that merges
both precision and recall. This is calculated as follows:

𝐹1 =
1

𝛿 ⋅ 1
𝑃 + (1 − 𝛿) 1𝑅

=

(

𝛾2 + 1
)

Prec ⋅Rec
(

𝛾2
)

Prec+Rec
(20)

where 𝛾2 = 1−𝛿
𝛿 , 𝛼 ∈ [0, 1], and 𝛾2 ∈ [0,∞]. If a large value (𝛾 > 1) assigns to the 𝛾, it indicates that precision has more priority. If a

small value (𝛾 < 1) assigns to the 𝛾, it indicates that recall has more priority. If 𝛾 = 1 the precision and recall are assumed to have
equally priority in computing 𝐹 -measure. 𝐹 -measure for 𝛾 = 1 is computed as follows:

𝐹1 =
2 ⋅ Prec ⋅Rec
Prec + Rec

(21)

where Prec is precision and Rec is recall.

4.4. Quantitative evaluations of the approaches

The results of our experiments on two publicly available datasets, CMU-MOSI and CMU-MOSEI, are presented in Table 2 (MOSEI)
and Table 3 (MOSI). After we investigated a large number of models for the same task, our model could outperform most baselines
on all metrics (MAE, Corr, Acc-2, F1-score, Acc-7). Following the previous works, we report Weighted F1 score (F1-Score) and
binary classification accuracy (Acc-2). Specifically, for MOSI and MOSEI datasets, we calculate Acc-2 and F1-Score in two ways:
negative/non-negative (non-exclude zero) and negative/positive (exclude zero) (Hazarika et al., 2020). Compared to TFN based on
tensor fusion, our model on the CMU-MOSEI dataset has higher binary classification accuracy than TFN, while the seven classification
accuracy was higher. We consider that this is because tensor fusion-based model in TFN cannot further explore the connections
between multimodal data, while our proposed multimodal communication module just enables good interaction between multimodal
data. These results are a good demonstration of the superiority of PS-Mixer.



H. Lin et al.

s
t
r
a
t

4

p
t

C

Table 3
Performances of multimodal models in MOSI.
Models MAE (↓) Corr (↑) Acc-2 (↑) F-score (↑) Acc-7 (↑)

TFN 0.970 0.633 73.9 73.4 32.1
LMF 0.912 0.668 76.4 75.7 32.8
LMFN – – 80.9 80.9 –
HFFN – – 80.2 80.3 –

ARGF – – 81.4 81.5 –
MFM 0.877 0.706 81.7 81.6 35.4

RAVEN 0.915 0.691 78.0 76.6 33.2
MuIT 0.871 0.698 83.0 82.8 40.0
MICA – – 82.6 82.7 40.8

Multimodal Graph 0.933 0.684 80.6 80.5 32.1
GraphCAGE 0.933 0.684 82.1 82.1 35.4

MFN 0.965 0.632 77.4 77.3 34.1
MARN 0.968 0.625 77.1 77.0 34.7
MV-LSTM 1.019 0.601 73.9 74 33.2
RMFN 0.922 0.681 78.4 78.0 38.3

GATE – – 83.91 81.17 –
AMF-BiGRU – – 82.05 82.02 –

CIA 0.914 0.689 79.8 79.5 38.9
DFF-ATMF – – 80.9 81.2 –

PS-Mixer 0.794 0.748 80.3/82.1 80.3/82.1 44.31

Table 4
Ablation study of PS-Mixer model on different components and three losses. For component part, we remove MLP-C and test on
CMU-MOSI. For loss part, we replace the loss function with an Euclidean distance form.

Method MAE Corr Acc-2 F-score Acc-7

w/o MLP 0.871 0.714 0.782/0.795 0.782/0.794 38.7

task loss with Euclidean metric 0.864 0.737 0.793/0.814 0.793/0.813 36.5
polar loss with Euclidean metric 0.867 0.714 0.790/0.803 0.789/0.802 37.4
strength loss with Euclidean metric 0.819 0.754 0.794/0.809 0.794/0.809 38.1

PS-Mixer 0.794 0.748 80.3/82.1 80.3/82.1 44.31

Table 5
Ablation study of PS-Mixer model on different components and three losses. For component part, we remove MLP-C and test on
CMU-MOSEI. For loss part, we replace the loss function with an Euclidean distance form.
Method MAE Corr Acc-2 F-score Acc-7

w/o MLP 0.543 0.760 0.825/0.854 0.822/0.855 52.7

task loss with Euclidean metric 0.443 0.756 0.815/0.850 0.815/0.850 52.2
polar loss with Euclidean metric 0.606 0.759 0.817/0.850 0.812/0.850 49.2
strength loss with Euclidean metric 0.543 0.756 0.843/0.855 0.842/0.857 52.7

PS-Mixer 0.537 0.765 83.1/86.1 83.1/86.1 53.0

4.5. Ablation study

We conduct an ablation study to evaluate the MLP communication structure and the contribution of the three loss functions. As
hown in Tables 4, To explore the role of the different components, we first remove the MLP communication structure and test it on
he MOSI dataset, and we can see that the accuracy of the binary classification and seven classifications decreased by 3.9% and 5.5%
espectively. Next, as shown in Table 5 we replace the loss function with an Euclidean distance form and the model performance
lso decreases. Overall, using our proposed MLP communication structure and using the cosine similarity in the polar loss function,
he correlation coefficient distance in strength loss can significantly improve the model results.

.5.1. MLP vs. Transformer
The well-established transformer layer is composed of one or more multi-head attention blocks, which are used to capture

osition-wise token interactions by aggregating information across tokens. It could also have the function of modality communicating
hough with a huge number of parameters.

To compare the performance of the MLP and transformer on the Modality Communication module, we replace the MLP-
ommunicator with one-head and two-head transformer encoder layer. Based on the same super parameter in the MOSI dataset,
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Table 6
Comparison with Transformer: We replace the MLP-Communicator with two
kinds of transformer and compute the parameter scale of the model.
Model Param MAE Corr

Transformer(One-head) 1.4M 0.83 0.72
Transformer(Two-head) 1.4M 0.81 0.73
MLP 0.3M 0.82 0.73

Fig. 6. Modality select model: we design a network with parallel input and same initial weights to select modalities on different data.

Table 7
Contribution of different modalities.

Modality Sentiment polarity Sentiment strength

text 48.3% 51.4%
audio 21.1% 29.4%
visual 30.5% 19.1%

we compute the parameter scale of the model without the part for feature representation, and the result is shown in Table 6. We
could see that MLP-Communicator achieves nearly the same effect with less parameters.

4.5.2. Polar and strength vector validation
To verify the role of polar and strength vector in PS-Mixer model, We have designed special experiments to demonstrate their

erformance in judging the direction and strength of the sentiment. For polar vector, the label values are discretized as positive or
egative and the MSE loss function is replaced with the Cross-Entropy loss function. In the model, we only use the polar vector
or prediction and obtain the experimental results. For strength vector, we take the absolute values of the labels and only use the
trength vector in the model for prediction to get the results.

For the polar vector, the Acc-2 reaches 81.5% and 85.9% for MOSI and MOSEI, respectively. Similarly, in the experiments with
trength vector, MAE reaches 0.63 in MOSI and 0.61 in MOSEI. This result indicates that the design of the polar vector and strength
ector has the expected effect.

.5.3. Modality selection
Our model learns from sentiment polarity and sentiment strength. Since different modality may have different contributions on

hem, a feature selection is conducted to determine the model input and modality combination. We propose to input the modality
et in parallel channels, and design the model to learn which modality is more relevant for lower loss value and give higher weight
o those modalities as shown in Fig. 6.

We intend to weight three modalities with a single scalar value that can reflect the scale of weight parameters. Let 𝑤𝑚 denote
he weight matrix for the 𝑚 ∈ {𝑎, 𝑣, 𝑙} modality vector. Before training, the weights corresponding to each modality vector are
nitialized with equal values and the input data is normalized to the same interval. Then, the weighted data are concatenated and
he output-head is applied.As the weight vector 𝑤𝑚 affects the magnitude of the modalities, they also affect the gradients propagated
ack to the linear layer, which transforms the input features. Therefore, it is important to have a unique weight matrix for each
nput feature matrix.We treat the 𝐿2 parametrization of weight vector as a way to evaluate different modalities in polarity and
trength. Experiment is conducted on the MOSI dataset and the results are shown on Table 7.

From the result of the contribution in Table 7, we could find that text and visual modalities have close relevance to sentiment

olarity, as well as that text and audio modalities on sentiment strength.
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Fig. 7. Polar Vector Visualization: The red points are two-dimension vectors that are positive label, as the same as the green points are negative. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

.6. Visualizing polar vector

We visualize the hidden polar vector for the samples in the testing sets. Fig. 7 presents the illustrations. We process the polar
ectors into two dimensions using t-distributed stochastic neighbor embedding (T-SNE). It is obvious that the two-dimensions polar
ectors are gathered into two clusters using our proposed method. This indicates that our method can well distinguish the sentiment
olarity of multimodal data.

. Conclusion

In this paper, we propose a Polar-Vector and Strength-Vector mixer model based on MLP-Mixer (PS-Mixer) that can effectively
use multimodal information and improve the accuracy of sentiment analysis. We use MLP for communicating modal information,
iscarding the Transformer’s multi-headed attention mechanism. The polar and strength scales of the sentiment states are together
or sentiment analysis. Our experiments show that this MLP-based model achieves SOTA results in multimodal sentiment analysis
asks compared with baseline methods. Our model not only outperforms other models in terms of accuracy due to its innovative
se of the MLP mechanism, but also is smaller in parameter than other similar model (e.g. Transformer). Our model demonstrates
he feasibility of the MLP mechanism in multimodal tasks, showing that attention is not necessary and can be replaced by MLP.
nyway, the fusion method in PS-Mixer still needs to be improved to be applicable to emotion analysis. For future work, we will
xplore the way to communicate and fuse multimodal data more efficiently.
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