
Sequence analysis

HAlign 4: a new strategy for rapidly aligning millions
of sequences
Tong Zhou 1,2, Pinglu Zhang 1,2, Quan Zou 1,2,�, Wu Han3,�

1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
2Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324003, China
3Department of Statistics, Stanford University, Stanford, CA 94305-4065, United States
�Corresponding authors. 4 Jianshebei Road, Chengdu, Sichuan 610054, China. E-mail: zouquan@nclab.net (Q.Z.); 100 Infinity Way, Mountain View, CA 94043,
United States. E-mail: kevinwh@stanford.edu (W.H.)
Associate Editor: Xin Gao

Abstract
Motivation: HAlign is a high-performance multiple sequence alignment software based on the star alignment strategy, which is the preferred
choice for rapidly aligning large numbers of sequences. HAlign3, implemented in Java, is the latest version capable of aligning an ultra-large
number of similar DNA/RNA sequences. However, HAlign3 still struggles with long sequences and extremely large numbers of sequences.
Results: To address this issue, we have implemented HAlign4 in Cþþ. In this version, we replaced the original suffix tree with Burrows–Wheeler
Transform and introduced the wavefront alignment algorithm to further optimize both time and memory efficiency. Experiments show that HAlign4
significantly outperforms HAlign3 in runtime and memory usage in both single-threaded and multi-threaded configurations, while maintains high align-
ment accuracy comparable to MAFFT. HAlign4 can complete the alignment of 10 million coronavirus disease 2019 (COVID-19) sequences in about
12 min and 300 GB of memory using 96 threads, demonstrating its efficiency and practicality for large-scale alignment on standard workstations.
Availability and implementation: Source code is available at https://github.com/malabz/HAlign-4, dataset is available at https://zenodo.org/
records/13934503.

1 Introduction
Multiple sequence alignment (MSA) is crucial in bioinformat-
ics for analyzing biological sequence structures, functions,
and phylogenetic inferences (Edgar and Batzoglou 2006,
Tian et al. 2024). Over the last decade, the costs of next-
generation sequencing have halved each year, outpacing the
reduction in computational costs. This significant progress
has led to the generation of hundreds of thousands of metage-
nomes and billions of putative gene sequences (Markowitz
et al. 2014, Wilke et al. 2016). Given that MSA is an NP-
hard problem (Wang and Jiang 1994), aligning such large-
scale sequence data (ranging from millions to tens of millions
of sequences) has become an urgent issue that needs to be
addressed. In recent years, advancements in sequence align-
ment (Marco-Sola et al. 2021, Marco-Sola et al. 2023, Zhai,
Chao et al. 2024, Zhang et al. 2024) and parallel computing
have made it feasible to align ultra-large-scale sequence data
(Garriga et al. 2019).

HAlign is a multiple sequence alignment software imple-
mented in Java, based on the center star strategy (Zou et al.
2015). The primary workflow of HAlign involves selecting
the longest sequence among all sequences as the central se-
quence and constructing a suffix tree for it to identify com-
mon substrings during pairwise alignment. Subsequently, all
remaining sequences are aligned with the central sequence in
a pairwise manner. This process is particularly well-suited for
acceleration using parallel computing techniques. HAlign

(Zou et al. 2015) utilizes Hadoop, HAlign2 (Wan and Zou
2017) uses Spark, and HAlign3 (Tang et al. 2022) leverages
multithreading parallel techniques to accelerate MSA.
Finally, all pairwise alignments are merged into a multiple se-
quence alignment using the central sequence as a bridge. The
HAlign series excels at rapidly aligning large numbers of simi-
lar nucleotide sequences, with HAlign3 capable of aligning 1
million Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) genomes in 30 min (Tang et al. 2022).

The latest version, HAlign3, utilizes a left-child right-sib-
ling (LCRS) tree to construct a suffix tree (Ukkonen 1995)
for the central star sequence, enabling the identification of
common substrings in pairwise sequences. For the remaining
segments, it uses affine gap penalty and k-banded dynamic
programming for alignment. By adopting these techniques,
HAlign3 efficiently aligns vast numbers of similar DNA/RNA
sequences, addressing the growing challenge of intraspecific
sequence accumulation driven by advancements in sequenc-
ing technology. However, when the sequence data is long,
constructing a suffix tree consumes a significant amount of
memory, and the resulting long segments can cause dynamic
programming to overflow. In addition, when the number of
sequences reaches millions or even tens of millions, the mem-
ory requirements of HAlign3 exceed the capacity of standard
workstations, making it challenging to support.

To address these issues, we implement HAlign4 in Cþþ and
make two major improvements. In HAlign4, we replace the

Received: 17 October 2024; Revised: 10 November 2024; Editorial Decision: 24 November 2024; Accepted: 26 November 2024
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(12), btae718
https://doi.org/10.1093/bioinformatics/btae718
Advance Access Publication Date: 28 November 2024
Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/12/btae718/7912339 by guest on 19 D
ecem

ber 2024

https://orcid.org/0009-0001-3743-2304
https://orcid.org/0009-0002-1788-3084
https://orcid.org/0000-0001-6406-1142
https://github.com/malabz/HAlign-4
https://zenodo.org/records/13934503
https://zenodo.org/records/13934503

suffix tree used in HAlign3 with Burrows–Wheeler Transform
(BWT) (Michael Burrows 1994) for the central sequence,
which accelerates the search for common substrings. For the
alignment of subsequent segments, we substitute the original
affine gap penalty and k-banded dynamic programming with
the wavefront alignment algorithm (Marco-Sola et al. 2021,
Marco-Sola et al. 2023). This modification is made because the
wavefront alignment algorithm can handle extremely long
sequences and, with a time complexity of O(ns) (where n is the
sequence length and is the alignment score), it offers very fast
alignment speeds for highly similar sequences.

HAlign4 represents a significant advancement in the field
of multiple sequence alignment, addressing the key challenges
of scalability and memory efficiency. By implementing BWT
and the wavefront alignment algorithm, HAlign4 provides a
powerful tool for researchers, enabling the alignment of
ultra-large sequence datasets using standard computational
resources. These enhancements ensure that HAlign4 meets
the growing demands of modern genomic research, making
large-scale MSA more accessible and practical.

2 Materials and methods
2.1 Overview of HAlign4
HAlign4 comprises three primary stages, as illustrated in
Fig. 1. The first stage involves reading the input data, select-
ing the central sequence, and constructing the BWT index.

Initially, the sequence data is read and preprocessed to ensure
integrity, such as replacing ambiguous nucleotides (“N”)
with random bases. The longest sequence is then chosen as
the central sequence because it is likely to contain the most
genetic information, enabling the identification of a greater
number of common substrings with the other sequences. This
central sequence is then used to construct the BWT index.
The second stage focuses on pairwise alignment of all remain-
ing sequences against this central sequence. The BWT index
facilitates the identification of common substrings between
sequences, followed by dynamic programming to select ap-
propriate substrings for segmentation. Each unaligned seg-
ment is subsequently aligned using the wavefront alignment
algorithm (WFA). This stage also uses multithreading to ac-
celerate alignment by identifying almost-unique exact
matches (MAM) (Marçais et al. 2018) between the central se-
quence and the query sequences. After sorting the pair-
matches, dynamic programming is used to select the longest
set of pair-matches for segmenting the sequences. The
enhancements in HAlign4, compared to HAlign3, are focused
on improving this second stage. In the final stage, all pairwise
alignment results are merged into a multiple sequence align-
ment, using the central sequence as the reference.

2.2 BWT index construction
In HAlign4, we replace the suffix tree used in HAlign3 with
BWT index to search for common substrings. The BWT

Figure 1. The overall workflow consists of three main steps: (A) the first step is to build the Burrows–Wheeler Transform (BWT) index of the center
sequence, which serves as the reference for alignment. The second step involves pairwise alignment of the central sequence with each input sequence
using the BWT index. Exact matches are identified, and the longest pair-matches set is found. The third step combines the pairwise alignments to
generate the final multiple sequence alignment (MSA). (B) The detailed process of pairwise alignment includes constructing the BWT index for the
central sequence (sequence 3), inputting the suffix of another sequence (sequence 1) to find exact matches using the BWT index, and identifying the
longest set of pair-matches between the central sequence and the query sequence. For unaligned segments, the wavefront alignment algorithm is used
to perform pairwise alignment, enhancing the alignment of long sequences. Finally, the aligned segments are integrated to obtain the final alignment
between the sequences, resulting in a comprehensive MSA that leverages the efficiency of BWT and the accuracy of wavefront alignment.

2 Zhou et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/12/btae718/7912339 by guest on 19 D

ecem
ber 2024

(Michael Burrows 1994), also known as block-sorting com-
pression, rearranges a character string into runs of similar
characters, facilitating compression techniques like move-to-
front transform and run-length encoding. Importantly, BWT
is reversible and only requires the position of the first original
character to be stored that is useful for efficient substring
searches. In contrast, a suffix tree is a compressed trie of all
the suffixes of a given string, allowing for efficient pattern
matching and substring search operations. Both BWTs and
suffix trees are crucial data structures in bioinformatics, pos-
sessing powerful capabilities for addressing string-related
problems. While both suffix tree and BWT require linear
memory to represent the center sequence, carefully imple-
mented BWTs have smaller constant factors, thereby reduc-
ing the overall memory usage. Given that BWTs can also
efficiently query the longest common substrings, we replace
the suffix tree with a BWT in this update. BWT can be effi-
ciently implemented using suffix array, achieving linear time
complexity. We utilize divsufsort to construct the suffix array
of the central star sequence in linear time.

2.3 Common substrings searching
During pairwise alignment between the central sequence and
other sequences, it is crucial to identify homologous regions
for segmenting the sequences, similar to the approach used in
MUMmer (Marçais et al. 2018). We establish a minimum
length threshold, l, and search for the longest common sub-
string at each position in the query sequence. For each suffix
of the query sequence, a backward search on the BWT is per-
formed, iterating from the end to the beginning while nar-
rowing the possible match range at each step. This process
continues until the entire suffix is matched or no further
matches are found, enabling efficient identification of maxi-
mal matching substrings. If a substring x; y; wð Þ is found,
where x is the start position in the central sequence, y is the
start position in the query sequence, and w is the length of
the substring, with w > l, it is considered a candidate homol-
ogous region. The search for the next candidate begins
at xþw � lþ1.

2.4 Select longest pair-matches
The initial step in selecting the longest pair-matches involves
sorting them. We utilize topological sorting (Kahn 1962) to
establish the preliminary order of pair-matches. We treat
each pair-match as a node in a graph. If the ending positions
of pair-match i in both sequences are less than the ending
positions of pair-match j, we draw a directed edge
from i to j. The weight of this edge is the length of match j
minus the overlap length between matches i and j: After add-
ing edges between each pair of nodes, we obtain a weighted
directed graph. By performing a topological sort on the nodes
of this graph, we can determine the preliminary order of the
pair-matches. We then use a variant of the longest increasing
subsequence algorithm to find the longest set of pair-matches
that occur in ascending order without overlap in both the
central sequence and the query sequence.

2.5 Wavefront alignment
After segmenting the two sequences based on the final pair-
matches, each segment requires pairwise alignment. Wavefront
alignment is a recently developed method that leverages ho-
mologous regions between sequences to expedite the alignment
process. It operates in OðnsÞ time, where n is the read length

and s is the alignment score. This efficiency makes wavefront
alignment substantially faster than traditional dynamic pro-
gramming methods, especially when dealing with long and
highly similar sequences. In practice, we configure the dynamic
programming parameters as follows: affine gap penalties with
a match score of 0, a mismatch penalty of 2, a gap opening
penalty of 3, and a gap extension penalty of 1. The HAlign se-
ries aims to provide rapid alignment solutions for highly
similar nucleotide sequences. The integration of the WFA into
the HAlign workflow not only accelerates the alignment
process but also enhances the capability to accurately align
long sequences.

3 Results
The experiments are conducted on a system running Ubuntu
16.04.7 LTS, equipped with an Intel Xeon Platinum 8168
CPU at 2.70 GHz, 96 cores, and approximately 1 TB of mem-
ory. HAlign4, an open-source Cþþ implementation, is exten-
sively tested to evaluate its performance in terms of runtime,
memory usage, and alignment accuracy. These tests involve
comparisons with various established methods on both simu-
lated and real datasets. The methods included in the study are
MAFFT (Katoh et al. 2002), HAlign4, HAlign3 (Tang et al.
2022), MUSCLE3, and ClustalΩ (Sievers and Higgins 2014).

3.1 Dataset
To conduct the comparisons, we utilize both simulated and real
sequence data. For the simulated datasets, we use INDEible
(Fletcher and Yang 2009) to generate mitochondrial-like
sequences with similarity levels ranging from 70% to 99%,
based on parameters used in HAlign3. For datasets of varying
lengths, we use the complete monkeypox virus genome (Ma
et al. 2022) as a template, selecting the longest 1000 sequences
and truncating them to lengths ranging from 10 to 100 000
bases. This allowe us to generate simulated datasets of different
sequence lengths. For real datasets, we use the mt1x dataset
from mtDB (Ingman and Gyllensten 2006), as well as three
SARS-CoV-2 datasets. The mt1x dataset contains 672 sequen-
ces with an average length of 16 568 bases, while the SARS-
CoV-2 datasets have an average sequence length of 29 774
bases, and are divided into sets of 500 sequences, 1 million
sequences, and 10 million sequences. The 10 million data points
are generated by replicating the 1 million data points ten times.

3.2 Evaluation metrics
Sequence alignment quality is assessed using several bench-
mark metrics, including the Sum-of-Pairs (SP) (Altschul
1989) score, the Q score (Edgar 2004), and the Total
Column (TC) score. The SP score evaluates the alignment by
summing the scores of all sequence pairs, with matches
assigned a score of 1, mismatches −1, and gaps −2; lower SP
scores indicate higher alignment precision. The scaled SP
score (Scaled-SP) normalizes the SP score based on sequence
length, facilitating comparisons across different alignments,
as shown in formula 1:

scaled SP ¼
2�SP

n� n − 1ð Þ�Lð Þ
; (1)

where the SP is the total score of the sequence alignment, n is
the number of sequences, and L is the length of the aligned
sequences. The Q score ranges from 0 to 1 and is used to

HAlign4 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/12/btae718/7912339 by guest on 19 D
ecem

ber 2024

compare a multiple sequence alignment to a reference, with a
value of 1 indicating a perfect match. The TC score, which
measures only correctly aligned columns against a reference, is
stricter than both the SP and Q scores. Collectively, these met-
rics provide a comprehensive assessment of alignment quality.

3.3 Comparison of HAlign4 and HAlign3 on
simulated datasets
We conducte a comprehensive comparison between HAlign4
and HAlign3 on simulated datasets of varying lengths and
similarities, as depicted in Fig. 2. The results clearly demon-
strate that HAlign4 consistently surpasses HAlign3 in both
time and memory efficiency.

In Fig. 2A–C, which illustrate performance across different
sequence lengths, HAlign4 shows significant advantages. For
suffix structure construction (Fig. 2A), HAlign4 exhibits
markedly lower memory consumption and faster execution
times compared to HAlign3. During dynamic programming
(Fig. 2B), HAlign4 continues to outperform, requiring less
time and memory. The whole alignment process (Fig. 2C) fur-
ther confirms HAlign4’s superiority, as it consistently uses

less memory and completes the alignment process more
quickly than HAlign3.

Figure 2D–F focus on performance across different se-
quence similarities. In suffix structure construction (Fig. 2D),
HAlign4 maintains its efficiency, with lower memory usage
and faster execution times, irrespective of sequence similarity.
The benefits of HAlign4 are especially pronounced in dy-
namic programming at higher sequence similarities (Fig. 2E),
where it significantly outperforms HAlign3. The whole
alignment process (Fig. 2F) reiterates HAlign4’s robustness
and efficiency across varying levels of sequence similarity,
highlighting its consistent performance advantage.

3.4 Comparison of HAlign4 and other methods on
simulated datasets
Figure 3 illustrates a comprehensive performance and accu-
racy comparison of HAlign 4, HAlign 3, MAFFT, MUSCLE,
and ClustalΩ on simulated datasets, focusing on several criti-
cal metrics including scaled SP score, Q score, TC score, time,
and memory usage across various sequence lengths and
similarities.

Figure 2. Performance comparison between HAlign 4and HAlign 3. (A–C) Time and memory usage for suffix structure construction, dynamic
programming, and the whole alignment process across different sequence lengths. (D–F) Time and memory usage for suffix structure construction,
dynamic programming, and the whole alignment process across different sequence similarities. Circles represent memory usage (in MB). The horizontal
axis indicates sequence length or similarity, and the vertical axis indicates time (in ms).

4 Zhou et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/12/btae718/7912339 by guest on 19 D

ecem
ber 2024

Figure 3A and B shows the comparison of alignment qual-
ity of various MSA methods across different sequence
lengths. It can be observed that MUSCLE and ClustalΩ fail
to complete alignments for longer sequences, while MAFFT
achieves higher alignment quality than other methods. The
difference between HAlign4 and HAlign3 is minimal, with
both slightly trailing behind MAFFT. Figure 3C illustrates
the time and memory usage trends of different methods as se-
quence length increases. MAFFT’s alignment time signifi-
cantly increases with longer sequences, and HAlign3 shows a
substantial increase in memory usage with sequence length.
In contrast, HAlign4 demonstrates high robustness in both
time and memory efficiency.

On the other hand, we also explore the trends in time,
memory, and similarity with different methods as sequence
similarity changes. Figure 3D and E shows the changes in
alignment quality. It can be observed that MAFFT consis-
tently achieves the highest alignment quality, followed by
HAlign4. MUSCLE and ClustalΩ exhibit the poorest align-
ment quality. HAlign3 has very low alignment quality for
low-similarity sequences, but its quality gradually approaches
that of HAlign4 as sequence similarity increases. Regarding

alignment time and memory usage, MUSCLE and ClustalΩ
perform poorly, especially MUSCLE. For the other three
methods, as sequence similarity decreases, both alignment
time and memory usage increase. MAFFT shows the most
significant increase, followed by HAlign3, while HAlign4
maintains exceptional performance with minimal increases in
time and memory usage.

3.5 Comparison of HAlign4 and other methods on
real datasets
We also compare the performance of HAlign4, HAlign3,
MAFFT, MUSCLE, and ClustalΩ on real datasets to evaluate
their efficiency and accuracy under practical conditions. The
results, summarized in Tables 1 and 2, highlight significant
differences in alignment time, memory usage, and accuracy
among the methods. The result for MUSCLE was not dis-
played because the tool failed to complete the alignment
within a reasonable time and memory constraint.

Table 1 presents the performance metrics for the mt1x
dataset. HAlign4 demonstrates remarkable efficiency with a
single-threaded alignment time of 0.4 s and memory usage of

Figure 3. Performance and accuracy comparison of HAlign4, HAlign3, MAFFT, MUSCLE, and Clustal Omega. (A–C) show scaled SP score, Q score (solid
line), TC score (dashed line), and time and memory usage across different sequence lengths. (D–F) display the same metrics across different sequence
similarities. Horizontal axes in (A–C) represent sequence length, while in (D–F) they represent sequence similarity. Vertical axes in (A, D) represent scaled
SP score, in (B, E) Q and TC scores, and in (C, F) time (s) and memory (MB). Note: For a detailed explanation of the SP score, Q score, and TC score
metrics, please refer to Section 3.2.

HAlign4 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/12/btae718/7912339 by guest on 19 D
ecem

ber 2024

17.4 MB. Its multi-threaded performance was equally im-
pressive, completing the alignment in 0.2 s with 19.8 MB of
memory. The Scaled-SP score of 0.991525 indicates high
alignment accuracy. HAlign3, while accurate (Scaled-SP score
of 0.991586), required significantly more resources, taking
1.9 s and 300.5 MB of memory for single-threaded alignment
and 1.7 s and 325.2 MB for multi-threaded alignment.
MAFFT shows good alignment quality (Scaled-SP score of
0.991043) but is less efficient, particularly in multi-threaded
mode, where it requires 25.6 s and 632.8 MB of memory.
MUSCLE fails to complete the alignment within reasonable
time and memory limits, with ClustalΩ showing the longest
times and highest memory usage.

Table 2 illustrates the performance on the SARS-CoV-2-
500 dataset. Again, HAlign4 outperforms other methods
with a single-threaded alignment time of 0.5 s and memory
usage of 22.8 MB. Its multi-threaded performance remained
strong, completing in 0.2 s with 29.6 MB of memory.
The Scaled-SP score is slightly lower at 0.98666, but still in-
dicative of high alignment accuracy. HAlign3, while accurate
(Scaled-SP score of 0.98666), shows higher resource
consumption, taking 2 s and 407.0 MB of memory for single-
threaded alignment and 1.9 s and 405.2 MB for multi-
threaded alignment. MAFFT, despite good alignment quality
(Scaled-SP score of 0.98676), required much longer times, es-
pecially in multi-threaded mode (46.8 s and 528.2 MB of
memory). MUSCLE again fails to complete the alignment
efficiently, with ClustalΩ showing extreme times and mem-
ory usage.

We also conduct experiments on COVID-19 datasets con-
sisting of 1 million and 10 million sequences, utilizing 96
threads for both HAlign3 and HAlign4. For the 1 million se-
quence dataset, HAlign3 requires 12 min and 53 s with
505 GB of memory, whereas HAlign4 completes the task in
just 2 min and 26 s, using only 32 GB of memory. When
aligning the 10 million sequence dataset, HAlign3 is unable
to complete the task, while HAlign4 successfully finishes in
26 min and 15 s, using 318 GB of memory. These results
highlight HAlign4’s significant memory optimization,

making large-scale multiple sequence alignments feasible on
more typical workstations.

4 Discussion
In this study, we introduce HAlign4, a substantial advance-
ment over its predecessor HAlign3, designed to tackle the chal-
lenges inherent in large-scale multiple sequence alignment. Our
findings indicate that HAlign4 consistently surpasses HAlign3
in both computational efficiency and memory usage across a
wide range of simulated and real-world datasets. Notably,
HAlign4 incorporates significant algorithmic enhancements,
including the BWT index and wavefront alignment, which col-
lectively contribute to its superior performance. These optimi-
zations allow HAlign4 to handle larger datasets with enhanced
efficiency, reducing computational demands and enabling its
use on standard workstations without the need for specialized
hardware infrastructure. The implementation in Cþþ further
contributes to its optimized performance, allowing researchers
to efficiently utilize available resources and achieve rapid align-
ment results even for ultra-large datasets.

The experiments conducted on COVID-19 datasets further
demonstrate the scalability of HAlign4. For example, when
aligning a dataset of 1 million sequences, HAlign3 requires
505 GB of memory, while HAlign4 completes the alignment
using only 32 GB of memory. In contrast to HAlign3, which
faces significant memory constraints and fails to complete the
alignment of the largest dataset, HAlign4 exhibits robust per-
formance, completing the alignment in a fraction of the time
and with considerably lower memory consumption. This
ability to effectively manage large-scale datasets is crucial in
contemporary bioinformatics, where the volume of sequence
data is growing at an unprecedented rate. The capability of
HAlign4 to efficiently handle millions of sequences not only
saves time but also provides an accessible solution for labora-
tories with limited computational resources. This scalability
ensures that researchers can conduct comprehensive genomic
analyses without the bottlenecks often associated with mem-
ory and processing limitations.

Beyond its computational advantages, HAlign4 maintains
high alignment accuracy, comparable to leading alignment
tools such as MAFFT, while outperforming others like
MUSCLE and ClustalΩ, which fails to complete alignments
for longer sequences. The alignment quality of HAlign4 is par-
ticularly notable for maintaining consistency across a wide
range of sequence similarities and lengths, making it suitable
for diverse applications, from viral genome tracking to evolu-
tionary studies. The combination of speed, memory efficiency,
and alignment accuracy positions HAlign4 as a versatile and
powerful tool for multiple sequence alignment, especially
suited for large and complex datasets. The incorporation of
advanced data structures and alignment algorithms not only
enhances its efficiency but also ensures that the alignment pro-
cess remains reliable, even under challenging conditions in-
volving high sequence variability and length heterogeneity.

In addition to its core features, HAlign4 provides a user-
friendly interface and supports parallel computing, enabling
users to fully leverage multi-core processors for faster align-
ment. This feature is particularly beneficial in environments
where time is a critical factor, such as during pandemic
responses or large-scale biodiversity assessments. The combi-
nation of advanced algorithmic techniques and practical us-
ability makes HAlign4 an ideal choice for bioinformaticians

Table 1. Performance comparison for mt1x dataset.a

Software t1-time t1-mem t8-time t8-mem Scaled-SP

HAlign4 0.4 s 17.4 MB 0.2 s 19.8 MB 0.991525
HAlign3 1.9 s 300.5 MB 1.7 s 325.2 MB 0.991586
MAFFT 2 min 19 s 148.3 MB 25.6 s 632.8 MB 0.991043
ClustalΩ 6 h 44 min

7 s
1.7 GB 5 h 31 min

28 s
1.7 GB 0.991295

a The first row lists the alignment software used in the comparison:
HAlign4, HAlign3, MAFFT, MUSCLE, and ClustalΩ. Columns indicate:
t1-time (single-threaded alignment time), t1-mem (single-threaded memory
usage), t8-time (8-thread alignment time), t8-mem (8-thread memory
usage), and Scaled-SP (Scaled Sum-of-Pairs alignment accuracy score). Bold
values represent the best-performing results in each column.

Table 2. Performance comparison for SARS-CoV-2-500 dataset.a

Software t1-time t1-mem t8-time t8-mem Scaled-SP

HAlign4 0.5 s 22.8 MB 0.2 s 29.6 MB 0.98666
HAlign3 2 s 407.0 MB 1.9 s 405.2 MB 0.98666
MAFFT 2 min 59 s 170.8 MB 46.8 s 528.2 MB 0.98676
ClustalΩ 16 h 2 min

32 s
5.2 GB 16 h 5 min

23 s
5.3 GB 0.98673

a The remaining details are consistent with those provided in Table 1.

6 Zhou et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/12/btae718/7912339 by guest on 19 D

ecem
ber 2024

seeking a reliable tool that can adapt to both small-scale and
large-scale projects. Furthermore, the open-source nature of
HAlign4 encourages community-driven improvements and
adaptations, fostering a collaborative environment where the
tool can evolve in response to emerging needs and challenges
in the field.

In summary, HAlign4 represents a significant improvement
in multiple sequence alignment methodologies, effectively
addressing the key limitations of prior approaches and offer-
ing a reliable solution for modern bioinformatics challenges.
Its ability to balance speed, accuracy, and resource efficiency
makes it a valuable asset for researchers working with
increasingly large and complex datasets. Future work may
focus on incorporating clustering algorithms and post-
alignment processing strategies to further enhance the quality
of star alignments. In addition, exploring the integration of
machine learning techniques could provide further optimiza-
tion opportunities, enabling adaptive alignment strategies
that respond dynamically to the specific characteristics of the
input data. Such advancements would further solidify
HAlign4’s position as a leading tool in the rapidly evolving
landscape of bioinformatics.

Acknowledgements
We would like to thank our predecessors for their contribu-
tions in sequence alignment and for their valuable experience.

Conflict of interest: None declared.

Funding
The work was supported by the National Natural Science
Foundation of China [62425107, 62450002].

References
Altschul SF. Gap costs for multiple sequence alignment. J Theor Biol

1989;138:297–309.
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Res 2004;32:1792–7.
Edgar RC, Batzoglou S. Multiple sequence alignment. Curr Opin Struct

Biol 2006;16:368–73.
Fletcher W, Yang Z. INDELible: a flexible simulator of biological se-

quence evolution. Mol Biol Evol 2009;26:1879–88.
Garriga E, Di Tommaso P, Magis C et al. Large multiple sequence align-

ments with a root-to-leaf regressive method. Nat Biotechnol 2019;
37:1466–70.

Ingman M, Gyllensten U. mtDB: human mitochondrial genome data-
base, a resource for population genetics and medical sciences.
Nucleic Acids Res 2006;34:D749–51.

Kahn AB. Topological sorting of large networks. Commun ACM 1962;
5:558–62.

Katoh K, Misawa K, Kuma K. I et al. MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform.
Nucleic Acids Res 2002;30:3059–66.

Ma Y, Chen M, Bao Y et al. MPoxVR: a comprehensive genomic re-
source for monkeypox virus variant surveillance. The Innovation
2022;3:100296.

Marçais G, Delcher AL, Phillippy AM et al. MUMmer4: a fast and
versatile genome alignment system. PLoS Comput Biol 2018;
14:e1005944.

Marco-Sola S, Eizenga JM, Guarracino A et al. Optimal gap-affine
alignment in O (s) space. Bioinformatics 2023;39:btad074.

Marco-Sola S, Moure JC, Moreto M et al. Fast gap-affine pairwise
alignment using the wavefront algorithm. Bioinformatics 2021;
37:456–63.

Markowitz VM, Chen I-MA, Chu K et al. IMG/M 4 version of the inte-
grated metagenome comparative analysis system. Nucleic Acids Res
2014;42:D568–73.

Michael Burrows DW. A block-sorting lossless data compression algo-
rithm. Technical report. Palo Alto, CA: Digital Equipment
Corporation. 1994.

Sievers F, Higgins DG. Clustal omega, accurate alignment of very large
numbers of sequences. Methods Mol Biol 2014;1079:105–16.

Tang F, Chao J, Wei Y et al. HAlign 3: fast multiple alignment of ultra-
large numbers of similar DNA/RNA sequences. Molecular Biology
and Evolution 2022;39:msac166.

Tian Q, Zhang P, Zhai Y et al. Application and comparison of machine
learning and database-based methods in taxonomic classification of
high-throughput sequencing data. Genome Biol Evol 2024;16:1–2.

Ukkonen E. On-line construction of suffix trees. Algorithmica 1995;
14:249–60.

Wan S, Zou Q. HAlign-II: efficient ultra-large multiple sequence align-
ment and phylogenetic tree reconstruction with distributed and par-
allel computing. Algorithms Mol Biol 2017;12:1–10.

Wang L, Jiang TAO. On the complexity of multiple sequence align-
ment. J Comput Biol 1994;1:337–48.

Wilke A, Bischof J, Gerlach W et al. The MG-RAST metagenomics
database and portal in 2015. Nucleic Acids Res 2016;44:D590–4.

Zhai Y, Chao J, Wang Y et al. TPMA: a two pointers meta-alignment
tool to ensemble different multiple nucleic acid sequence alignments.
PLoS Comput Biol 2024;20:e1011988.

Zhang P, Liu H, Wei Y et al. FMAlign2: a novel fast multiple nucleotide
sequence alignment method for ultralong datasets. Bioinformatics
2024;40:btae014.

Zou Q, Hu Q, Guo M et al. HAlign: fast multiple similar DNA/RNA se-
quence alignment based on the centre star strategy. Bioinformatics
2015;31:2475–81.

© The Author(s) 2024. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2024, 40, 1–7
https://doi.org/10.1093/bioinformatics/btae718
Original Paper

HAlign4 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/12/btae718/7912339 by guest on 19 D
ecem

ber 2024

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	Acknowledgements
	Funding
	References

