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Abstract
Motivation: HAlign is a high-performance multiple sequence alignment software based on the star alignment strategy, which is the preferred 
choice for rapidly aligning large numbers of sequences. HAlign3, implemented in Java, is the latest version capable of aligning an ultra-large 
number of similar DNA/RNA sequences. However, HAlign3 still struggles with long sequences and extremely large numbers of sequences.
Results: To address this issue, we have implemented HAlign4 in Cþþ. In this version, we replaced the original suffix tree with Burrows–Wheeler 
Transform and introduced the wavefront alignment algorithm to further optimize both time and memory efficiency. Experiments show that HAlign4 
significantly outperforms HAlign3 in runtime and memory usage in both single-threaded and multi-threaded configurations, while maintains high align-
ment accuracy comparable to MAFFT. HAlign4 can complete the alignment of 10 million coronavirus disease 2019 (COVID-19) sequences in about 
12 min and 300 GB of memory using 96 threads, demonstrating its efficiency and practicality for large-scale alignment on standard workstations.
Availability and implementation: Source code is available at https://github.com/malabz/HAlign-4, dataset is available at https://zenodo.org/ 
records/13934503.

1 Introduction
Multiple sequence alignment (MSA) is crucial in bioinformat-
ics for analyzing biological sequence structures, functions, 
and phylogenetic inferences (Edgar and Batzoglou 2006, 
Tian et al. 2024). Over the last decade, the costs of next- 
generation sequencing have halved each year, outpacing the 
reduction in computational costs. This significant progress 
has led to the generation of hundreds of thousands of metage-
nomes and billions of putative gene sequences (Markowitz 
et al. 2014, Wilke et al. 2016). Given that MSA is an NP- 
hard problem (Wang and Jiang 1994), aligning such large- 
scale sequence data (ranging from millions to tens of millions 
of sequences) has become an urgent issue that needs to be 
addressed. In recent years, advancements in sequence align-
ment (Marco-Sola et al. 2021, Marco-Sola et al. 2023, Zhai, 
Chao et al. 2024, Zhang et al. 2024) and parallel computing 
have made it feasible to align ultra-large-scale sequence data 
(Garriga et al. 2019).

HAlign is a multiple sequence alignment software imple-
mented in Java, based on the center star strategy (Zou et al. 
2015). The primary workflow of HAlign involves selecting 
the longest sequence among all sequences as the central se-
quence and constructing a suffix tree for it to identify com-
mon substrings during pairwise alignment. Subsequently, all 
remaining sequences are aligned with the central sequence in 
a pairwise manner. This process is particularly well-suited for 
acceleration using parallel computing techniques. HAlign 

(Zou et al. 2015) utilizes Hadoop, HAlign2 (Wan and Zou 
2017) uses Spark, and HAlign3 (Tang et al. 2022) leverages 
multithreading parallel techniques to accelerate MSA. 
Finally, all pairwise alignments are merged into a multiple se-
quence alignment using the central sequence as a bridge. The 
HAlign series excels at rapidly aligning large numbers of simi-
lar nucleotide sequences, with HAlign3 capable of aligning 1 
million Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) genomes in 30 min (Tang et al. 2022).

The latest version, HAlign3, utilizes a left-child right-sib-
ling (LCRS) tree to construct a suffix tree (Ukkonen 1995) 
for the central star sequence, enabling the identification of 
common substrings in pairwise sequences. For the remaining 
segments, it uses affine gap penalty and k-banded dynamic 
programming for alignment. By adopting these techniques, 
HAlign3 efficiently aligns vast numbers of similar DNA/RNA 
sequences, addressing the growing challenge of intraspecific 
sequence accumulation driven by advancements in sequenc-
ing technology. However, when the sequence data is long, 
constructing a suffix tree consumes a significant amount of 
memory, and the resulting long segments can cause dynamic 
programming to overflow. In addition, when the number of 
sequences reaches millions or even tens of millions, the mem-
ory requirements of HAlign3 exceed the capacity of standard 
workstations, making it challenging to support.

To address these issues, we implement HAlign4 in Cþþ and 
make two major improvements. In HAlign4, we replace the 
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suffix tree used in HAlign3 with Burrows–Wheeler Transform 
(BWT) (Michael Burrows 1994) for the central sequence, 
which accelerates the search for common substrings. For the 
alignment of subsequent segments, we substitute the original 
affine gap penalty and k-banded dynamic programming with 
the wavefront alignment algorithm (Marco-Sola et al. 2021, 
Marco-Sola et al. 2023). This modification is made because the 
wavefront alignment algorithm can handle extremely long 
sequences and, with a time complexity of O(ns) (where n is the 
sequence length and is the alignment score), it offers very fast 
alignment speeds for highly similar sequences.

HAlign4 represents a significant advancement in the field 
of multiple sequence alignment, addressing the key challenges 
of scalability and memory efficiency. By implementing BWT 
and the wavefront alignment algorithm, HAlign4 provides a 
powerful tool for researchers, enabling the alignment of 
ultra-large sequence datasets using standard computational 
resources. These enhancements ensure that HAlign4 meets 
the growing demands of modern genomic research, making 
large-scale MSA more accessible and practical.

2 Materials and methods
2.1 Overview of HAlign4
HAlign4 comprises three primary stages, as illustrated in  
Fig. 1. The first stage involves reading the input data, select-
ing the central sequence, and constructing the BWT index. 

Initially, the sequence data is read and preprocessed to ensure 
integrity, such as replacing ambiguous nucleotides (“N”) 
with random bases. The longest sequence is then chosen as 
the central sequence because it is likely to contain the most 
genetic information, enabling the identification of a greater 
number of common substrings with the other sequences. This 
central sequence is then used to construct the BWT index. 
The second stage focuses on pairwise alignment of all remain-
ing sequences against this central sequence. The BWT index 
facilitates the identification of common substrings between 
sequences, followed by dynamic programming to select ap-
propriate substrings for segmentation. Each unaligned seg-
ment is subsequently aligned using the wavefront alignment 
algorithm (WFA). This stage also uses multithreading to ac-
celerate alignment by identifying almost-unique exact 
matches (MAM) (Marçais et al. 2018) between the central se-
quence and the query sequences. After sorting the pair- 
matches, dynamic programming is used to select the longest 
set of pair-matches for segmenting the sequences. The 
enhancements in HAlign4, compared to HAlign3, are focused 
on improving this second stage. In the final stage, all pairwise 
alignment results are merged into a multiple sequence align-
ment, using the central sequence as the reference.

2.2 BWT index construction
In HAlign4, we replace the suffix tree used in HAlign3 with 
BWT index to search for common substrings. The BWT 

Figure 1. The overall workflow consists of three main steps: (A) the first step is to build the Burrows–Wheeler Transform (BWT) index of the center 
sequence, which serves as the reference for alignment. The second step involves pairwise alignment of the central sequence with each input sequence 
using the BWT index. Exact matches are identified, and the longest pair-matches set is found. The third step combines the pairwise alignments to 
generate the final multiple sequence alignment (MSA). (B) The detailed process of pairwise alignment includes constructing the BWT index for the 
central sequence (sequence 3), inputting the suffix of another sequence (sequence 1) to find exact matches using the BWT index, and identifying the 
longest set of pair-matches between the central sequence and the query sequence. For unaligned segments, the wavefront alignment algorithm is used 
to perform pairwise alignment, enhancing the alignment of long sequences. Finally, the aligned segments are integrated to obtain the final alignment 
between the sequences, resulting in a comprehensive MSA that leverages the efficiency of BWT and the accuracy of wavefront alignment.
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(Michael Burrows 1994), also known as block-sorting com-
pression, rearranges a character string into runs of similar 
characters, facilitating compression techniques like move-to- 
front transform and run-length encoding. Importantly, BWT 
is reversible and only requires the position of the first original 
character to be stored that is useful for efficient substring 
searches. In contrast, a suffix tree is a compressed trie of all 
the suffixes of a given string, allowing for efficient pattern 
matching and substring search operations. Both BWTs and 
suffix trees are crucial data structures in bioinformatics, pos-
sessing powerful capabilities for addressing string-related 
problems. While both suffix tree and BWT require linear 
memory to represent the center sequence, carefully imple-
mented BWTs have smaller constant factors, thereby reduc-
ing the overall memory usage. Given that BWTs can also 
efficiently query the longest common substrings, we replace 
the suffix tree with a BWT in this update. BWT can be effi-
ciently implemented using suffix array, achieving linear time 
complexity. We utilize divsufsort to construct the suffix array 
of the central star sequence in linear time.

2.3 Common substrings searching
During pairwise alignment between the central sequence and 
other sequences, it is crucial to identify homologous regions 
for segmenting the sequences, similar to the approach used in 
MUMmer (Marçais et al. 2018). We establish a minimum 
length threshold, l, and search for the longest common sub-
string at each position in the query sequence. For each suffix 
of the query sequence, a backward search on the BWT is per-
formed, iterating from the end to the beginning while nar-
rowing the possible match range at each step. This process 
continues until the entire suffix is matched or no further 
matches are found, enabling efficient identification of maxi-
mal matching substrings. If a substring x; y; wð Þ is found, 
where x is the start position in the central sequence, y is the 
start position in the query sequence, and w is the length of 
the substring, with w > l, it is considered a candidate homol-
ogous region. The search for the next candidate begins 
at xþw � lþ1.

2.4 Select longest pair-matches
The initial step in selecting the longest pair-matches involves 
sorting them. We utilize topological sorting (Kahn 1962) to 
establish the preliminary order of pair-matches. We treat 
each pair-match as a node in a graph. If the ending positions 
of pair-match i in both sequences are less than the ending 
positions of pair-match j, we draw a directed edge 
from i to j. The weight of this edge is the length of match j 
minus the overlap length between matches i and j: After add-
ing edges between each pair of nodes, we obtain a weighted 
directed graph. By performing a topological sort on the nodes 
of this graph, we can determine the preliminary order of the 
pair-matches. We then use a variant of the longest increasing 
subsequence algorithm to find the longest set of pair-matches 
that occur in ascending order without overlap in both the 
central sequence and the query sequence.

2.5 Wavefront alignment
After segmenting the two sequences based on the final pair- 
matches, each segment requires pairwise alignment. Wavefront 
alignment is a recently developed method that leverages ho-
mologous regions between sequences to expedite the alignment 
process. It operates in OðnsÞ time, where n is the read length 

and s is the alignment score. This efficiency makes wavefront 
alignment substantially faster than traditional dynamic pro-
gramming methods, especially when dealing with long and 
highly similar sequences. In practice, we configure the dynamic 
programming parameters as follows: affine gap penalties with 
a match score of 0, a mismatch penalty of 2, a gap opening 
penalty of 3, and a gap extension penalty of 1. The HAlign se-
ries aims to provide rapid alignment solutions for highly 
similar nucleotide sequences. The integration of the WFA into 
the HAlign workflow not only accelerates the alignment 
process but also enhances the capability to accurately align 
long sequences.

3 Results
The experiments are conducted on a system running Ubuntu 
16.04.7 LTS, equipped with an Intel Xeon Platinum 8168 
CPU at 2.70 GHz, 96 cores, and approximately 1 TB of mem-
ory. HAlign4, an open-source Cþþ implementation, is exten-
sively tested to evaluate its performance in terms of runtime, 
memory usage, and alignment accuracy. These tests involve 
comparisons with various established methods on both simu-
lated and real datasets. The methods included in the study are 
MAFFT (Katoh et al. 2002), HAlign4, HAlign3 (Tang et al. 
2022), MUSCLE3, and ClustalΩ (Sievers and Higgins 2014).

3.1 Dataset
To conduct the comparisons, we utilize both simulated and real 
sequence data. For the simulated datasets, we use INDEible 
(Fletcher and Yang 2009) to generate mitochondrial-like 
sequences with similarity levels ranging from 70% to 99%, 
based on parameters used in HAlign3. For datasets of varying 
lengths, we use the complete monkeypox virus genome (Ma 
et al. 2022) as a template, selecting the longest 1000 sequences 
and truncating them to lengths ranging from 10 to 100 000 
bases. This allowe us to generate simulated datasets of different 
sequence lengths. For real datasets, we use the mt1x dataset 
from mtDB (Ingman and Gyllensten 2006), as well as three 
SARS-CoV-2 datasets. The mt1x dataset contains 672 sequen-
ces with an average length of 16 568 bases, while the SARS- 
CoV-2 datasets have an average sequence length of 29 774 
bases, and are divided into sets of 500 sequences, 1 million 
sequences, and 10 million sequences. The 10 million data points 
are generated by replicating the 1 million data points ten times.

3.2 Evaluation metrics
Sequence alignment quality is assessed using several bench-
mark metrics, including the Sum-of-Pairs (SP) (Altschul 
1989) score, the Q score (Edgar 2004), and the Total 
Column (TC) score. The SP score evaluates the alignment by 
summing the scores of all sequence pairs, with matches 
assigned a score of 1, mismatches −1, and gaps −2; lower SP 
scores indicate higher alignment precision. The scaled SP 
score (Scaled-SP) normalizes the SP score based on sequence 
length, facilitating comparisons across different alignments, 
as shown in formula 1: 

scaled SP ¼
2�SP

n� n − 1ð Þ�Lð Þ
; (1) 

where the SP is the total score of the sequence alignment, n is 
the number of sequences, and L is the length of the aligned 
sequences. The Q score ranges from 0 to 1 and is used to 
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compare a multiple sequence alignment to a reference, with a 
value of 1 indicating a perfect match. The TC score, which 
measures only correctly aligned columns against a reference, is 
stricter than both the SP and Q scores. Collectively, these met-
rics provide a comprehensive assessment of alignment quality.

3.3 Comparison of HAlign4 and HAlign3 on 
simulated datasets
We conducte a comprehensive comparison between HAlign4 
and HAlign3 on simulated datasets of varying lengths and 
similarities, as depicted in Fig. 2. The results clearly demon-
strate that HAlign4 consistently surpasses HAlign3 in both 
time and memory efficiency.

In Fig. 2A–C, which illustrate performance across different 
sequence lengths, HAlign4 shows significant advantages. For 
suffix structure construction (Fig. 2A), HAlign4 exhibits 
markedly lower memory consumption and faster execution 
times compared to HAlign3. During dynamic programming 
(Fig. 2B), HAlign4 continues to outperform, requiring less 
time and memory. The whole alignment process (Fig. 2C) fur-
ther confirms HAlign4’s superiority, as it consistently uses 

less memory and completes the alignment process more 
quickly than HAlign3.

Figure 2D–F focus on performance across different se-
quence similarities. In suffix structure construction (Fig. 2D), 
HAlign4 maintains its efficiency, with lower memory usage 
and faster execution times, irrespective of sequence similarity. 
The benefits of HAlign4 are especially pronounced in dy-
namic programming at higher sequence similarities (Fig. 2E), 
where it significantly outperforms HAlign3. The whole 
alignment process (Fig. 2F) reiterates HAlign4’s robustness 
and efficiency across varying levels of sequence similarity, 
highlighting its consistent performance advantage.

3.4 Comparison of HAlign4 and other methods on 
simulated datasets
Figure 3 illustrates a comprehensive performance and accu-
racy comparison of HAlign 4, HAlign 3, MAFFT, MUSCLE, 
and ClustalΩ on simulated datasets, focusing on several criti-
cal metrics including scaled SP score, Q score, TC score, time, 
and memory usage across various sequence lengths and 
similarities.

Figure 2. Performance comparison between HAlign 4and HAlign 3. (A–C) Time and memory usage for suffix structure construction, dynamic 
programming, and the whole alignment process across different sequence lengths. (D–F) Time and memory usage for suffix structure construction, 
dynamic programming, and the whole alignment process across different sequence similarities. Circles represent memory usage (in MB). The horizontal 
axis indicates sequence length or similarity, and the vertical axis indicates time (in ms).
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Figure 3A and B shows the comparison of alignment qual-
ity of various MSA methods across different sequence 
lengths. It can be observed that MUSCLE and ClustalΩ fail 
to complete alignments for longer sequences, while MAFFT 
achieves higher alignment quality than other methods. The 
difference between HAlign4 and HAlign3 is minimal, with 
both slightly trailing behind MAFFT. Figure 3C illustrates 
the time and memory usage trends of different methods as se-
quence length increases. MAFFT’s alignment time signifi-
cantly increases with longer sequences, and HAlign3 shows a 
substantial increase in memory usage with sequence length. 
In contrast, HAlign4 demonstrates high robustness in both 
time and memory efficiency.

On the other hand, we also explore the trends in time, 
memory, and similarity with different methods as sequence 
similarity changes. Figure 3D and E shows the changes in 
alignment quality. It can be observed that MAFFT consis-
tently achieves the highest alignment quality, followed by 
HAlign4. MUSCLE and ClustalΩ exhibit the poorest align-
ment quality. HAlign3 has very low alignment quality for 
low-similarity sequences, but its quality gradually approaches 
that of HAlign4 as sequence similarity increases. Regarding 

alignment time and memory usage, MUSCLE and ClustalΩ 
perform poorly, especially MUSCLE. For the other three 
methods, as sequence similarity decreases, both alignment 
time and memory usage increase. MAFFT shows the most 
significant increase, followed by HAlign3, while HAlign4 
maintains exceptional performance with minimal increases in 
time and memory usage.

3.5 Comparison of HAlign4 and other methods on 
real datasets
We also compare the performance of HAlign4, HAlign3, 
MAFFT, MUSCLE, and ClustalΩ on real datasets to evaluate 
their efficiency and accuracy under practical conditions. The 
results, summarized in Tables 1 and 2, highlight significant 
differences in alignment time, memory usage, and accuracy 
among the methods. The result for MUSCLE was not dis-
played because the tool failed to complete the alignment 
within a reasonable time and memory constraint.

Table 1 presents the performance metrics for the mt1x 
dataset. HAlign4 demonstrates remarkable efficiency with a 
single-threaded alignment time of 0.4 s and memory usage of 

Figure 3. Performance and accuracy comparison of HAlign4, HAlign3, MAFFT, MUSCLE, and Clustal Omega. (A–C) show scaled SP score, Q score (solid 
line), TC score (dashed line), and time and memory usage across different sequence lengths. (D–F) display the same metrics across different sequence 
similarities. Horizontal axes in (A–C) represent sequence length, while in (D–F) they represent sequence similarity. Vertical axes in (A, D) represent scaled 
SP score, in (B, E) Q and TC scores, and in (C, F) time (s) and memory (MB). Note: For a detailed explanation of the SP score, Q score, and TC score 
metrics, please refer to Section 3.2.
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17.4 MB. Its multi-threaded performance was equally im-
pressive, completing the alignment in 0.2 s with 19.8 MB of 
memory. The Scaled-SP score of 0.991525 indicates high 
alignment accuracy. HAlign3, while accurate (Scaled-SP score 
of 0.991586), required significantly more resources, taking 
1.9 s and 300.5 MB of memory for single-threaded alignment 
and 1.7 s and 325.2 MB for multi-threaded alignment. 
MAFFT shows good alignment quality (Scaled-SP score of 
0.991043) but is less efficient, particularly in multi-threaded 
mode, where it requires 25.6 s and 632.8 MB of memory. 
MUSCLE fails to complete the alignment within reasonable 
time and memory limits, with ClustalΩ showing the longest 
times and highest memory usage.

Table 2 illustrates the performance on the SARS-CoV-2- 
500 dataset. Again, HAlign4 outperforms other methods 
with a single-threaded alignment time of 0.5 s and memory 
usage of 22.8 MB. Its multi-threaded performance remained 
strong, completing in 0.2 s with 29.6 MB of memory. 
The Scaled-SP score is slightly lower at 0.98666, but still in-
dicative of high alignment accuracy. HAlign3, while accurate 
(Scaled-SP score of 0.98666), shows higher resource 
consumption, taking 2 s and 407.0 MB of memory for single- 
threaded alignment and 1.9 s and 405.2 MB for multi- 
threaded alignment. MAFFT, despite good alignment quality 
(Scaled-SP score of 0.98676), required much longer times, es-
pecially in multi-threaded mode (46.8 s and 528.2 MB of 
memory). MUSCLE again fails to complete the alignment 
efficiently, with ClustalΩ showing extreme times and mem-
ory usage.

We also conduct experiments on COVID-19 datasets con-
sisting of 1 million and 10 million sequences, utilizing 96 
threads for both HAlign3 and HAlign4. For the 1 million se-
quence dataset, HAlign3 requires 12 min and 53 s with 
505 GB of memory, whereas HAlign4 completes the task in 
just 2 min and 26 s, using only 32 GB of memory. When 
aligning the 10 million sequence dataset, HAlign3 is unable 
to complete the task, while HAlign4 successfully finishes in 
26 min and 15 s, using 318 GB of memory. These results 
highlight HAlign4’s significant memory optimization, 

making large-scale multiple sequence alignments feasible on 
more typical workstations.

4 Discussion
In this study, we introduce HAlign4, a substantial advance-
ment over its predecessor HAlign3, designed to tackle the chal-
lenges inherent in large-scale multiple sequence alignment. Our 
findings indicate that HAlign4 consistently surpasses HAlign3 
in both computational efficiency and memory usage across a 
wide range of simulated and real-world datasets. Notably, 
HAlign4 incorporates significant algorithmic enhancements, 
including the BWT index and wavefront alignment, which col-
lectively contribute to its superior performance. These optimi-
zations allow HAlign4 to handle larger datasets with enhanced 
efficiency, reducing computational demands and enabling its 
use on standard workstations without the need for specialized 
hardware infrastructure. The implementation in Cþþ further 
contributes to its optimized performance, allowing researchers 
to efficiently utilize available resources and achieve rapid align-
ment results even for ultra-large datasets.

The experiments conducted on COVID-19 datasets further 
demonstrate the scalability of HAlign4. For example, when 
aligning a dataset of 1 million sequences, HAlign3 requires 
505 GB of memory, while HAlign4 completes the alignment 
using only 32 GB of memory. In contrast to HAlign3, which 
faces significant memory constraints and fails to complete the 
alignment of the largest dataset, HAlign4 exhibits robust per-
formance, completing the alignment in a fraction of the time 
and with considerably lower memory consumption. This 
ability to effectively manage large-scale datasets is crucial in 
contemporary bioinformatics, where the volume of sequence 
data is growing at an unprecedented rate. The capability of 
HAlign4 to efficiently handle millions of sequences not only 
saves time but also provides an accessible solution for labora-
tories with limited computational resources. This scalability 
ensures that researchers can conduct comprehensive genomic 
analyses without the bottlenecks often associated with mem-
ory and processing limitations.

Beyond its computational advantages, HAlign4 maintains 
high alignment accuracy, comparable to leading alignment 
tools such as MAFFT, while outperforming others like 
MUSCLE and ClustalΩ, which fails to complete alignments 
for longer sequences. The alignment quality of HAlign4 is par-
ticularly notable for maintaining consistency across a wide 
range of sequence similarities and lengths, making it suitable 
for diverse applications, from viral genome tracking to evolu-
tionary studies. The combination of speed, memory efficiency, 
and alignment accuracy positions HAlign4 as a versatile and 
powerful tool for multiple sequence alignment, especially 
suited for large and complex datasets. The incorporation of 
advanced data structures and alignment algorithms not only 
enhances its efficiency but also ensures that the alignment pro-
cess remains reliable, even under challenging conditions in-
volving high sequence variability and length heterogeneity.

In addition to its core features, HAlign4 provides a user- 
friendly interface and supports parallel computing, enabling 
users to fully leverage multi-core processors for faster align-
ment. This feature is particularly beneficial in environments 
where time is a critical factor, such as during pandemic 
responses or large-scale biodiversity assessments. The combi-
nation of advanced algorithmic techniques and practical us-
ability makes HAlign4 an ideal choice for bioinformaticians 

Table 1. Performance comparison for mt1x dataset.a

Software t1-time t1-mem t8-time t8-mem Scaled-SP

HAlign4 0.4 s 17.4 MB 0.2 s 19.8 MB 0.991525
HAlign3 1.9 s 300.5 MB 1.7 s 325.2 MB 0.991586
MAFFT 2 min 19 s 148.3 MB 25.6 s 632.8 MB 0.991043
ClustalΩ 6 h 44 min  

7 s
1.7 GB 5 h 31 min  

28 s
1.7 GB 0.991295

a The first row lists the alignment software used in the comparison: 
HAlign4, HAlign3, MAFFT, MUSCLE, and ClustalΩ. Columns indicate: 
t1-time (single-threaded alignment time), t1-mem (single-threaded memory 
usage), t8-time (8-thread alignment time), t8-mem (8-thread memory 
usage), and Scaled-SP (Scaled Sum-of-Pairs alignment accuracy score). Bold 
values represent the best-performing results in each column.

Table 2. Performance comparison for SARS-CoV-2-500 dataset.a

Software t1-time t1-mem t8-time t8-mem Scaled-SP

HAlign4 0.5 s 22.8 MB 0.2 s 29.6 MB 0.98666
HAlign3 2 s 407.0 MB 1.9 s 405.2 MB 0.98666
MAFFT 2 min 59 s 170.8 MB 46.8 s 528.2 MB 0.98676
ClustalΩ 16 h 2 min  

32 s
5.2 GB 16 h 5 min  

23 s
5.3 GB 0.98673

a The remaining details are consistent with those provided in Table 1.
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seeking a reliable tool that can adapt to both small-scale and 
large-scale projects. Furthermore, the open-source nature of 
HAlign4 encourages community-driven improvements and 
adaptations, fostering a collaborative environment where the 
tool can evolve in response to emerging needs and challenges 
in the field.

In summary, HAlign4 represents a significant improvement 
in multiple sequence alignment methodologies, effectively 
addressing the key limitations of prior approaches and offer-
ing a reliable solution for modern bioinformatics challenges. 
Its ability to balance speed, accuracy, and resource efficiency 
makes it a valuable asset for researchers working with 
increasingly large and complex datasets. Future work may 
focus on incorporating clustering algorithms and post- 
alignment processing strategies to further enhance the quality 
of star alignments. In addition, exploring the integration of 
machine learning techniques could provide further optimiza-
tion opportunities, enabling adaptive alignment strategies 
that respond dynamically to the specific characteristics of the 
input data. Such advancements would further solidify 
HAlign4’s position as a leading tool in the rapidly evolving 
landscape of bioinformatics.
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Marçais G, Delcher AL, Phillippy AM et al. MUMmer4: a fast and 
versatile genome alignment system. PLoS Comput Biol 2018; 
14:e1005944.

Marco-Sola S, Eizenga JM, Guarracino A et al. Optimal gap-affine 
alignment in O (s) space. Bioinformatics 2023;39:btad074.

Marco-Sola S, Moure JC, Moreto M et al. Fast gap-affine pairwise 
alignment using the wavefront algorithm. Bioinformatics 2021; 
37:456–63.

Markowitz VM, Chen I-MA, Chu K et al. IMG/M 4 version of the inte-
grated metagenome comparative analysis system. Nucleic Acids Res 
2014;42:D568–73.

Michael Burrows DW. A block-sorting lossless data compression algo-
rithm. Technical report. Palo Alto, CA: Digital Equipment 
Corporation. 1994.

Sievers F, Higgins DG. Clustal omega, accurate alignment of very large 
numbers of sequences. Methods Mol Biol 2014;1079:105–16.

Tang F, Chao J, Wei Y et al. HAlign 3: fast multiple alignment of ultra- 
large numbers of similar DNA/RNA sequences. Molecular Biology 
and Evolution 2022;39:msac166.

Tian Q, Zhang P, Zhai Y et al. Application and comparison of machine 
learning and database-based methods in taxonomic classification of 
high-throughput sequencing data. Genome Biol Evol 2024;16:1–2.

Ukkonen E. On-line construction of suffix trees. Algorithmica 1995; 
14:249–60.

Wan S, Zou Q. HAlign-II: efficient ultra-large multiple sequence align-
ment and phylogenetic tree reconstruction with distributed and par-
allel computing. Algorithms Mol Biol 2017;12:1–10.

Wang L, Jiang TAO. On the complexity of multiple sequence align-
ment. J Comput Biol 1994;1:337–48.

Wilke A, Bischof J, Gerlach W et al. The MG-RAST metagenomics 
database and portal in 2015. Nucleic Acids Res 2016;44:D590–4.

Zhai Y, Chao J, Wang Y et al. TPMA: a two pointers meta-alignment 
tool to ensemble different multiple nucleic acid sequence alignments. 
PLoS Comput Biol 2024;20:e1011988.

Zhang P, Liu H, Wei Y et al. FMAlign2: a novel fast multiple nucleotide 
sequence alignment method for ultralong datasets. Bioinformatics 
2024;40:btae014.

Zou Q, Hu Q, Guo M et al. HAlign: fast multiple similar DNA/RNA se-
quence alignment based on the centre star strategy. Bioinformatics 
2015;31:2475–81.

© The Author(s) 2024. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2024, 40, 1–7
https://doi.org/10.1093/bioinformatics/btae718
Original Paper

HAlign4                                                                                                                                                                                                                                            7 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/12/btae718/7912339 by guest on 19 D
ecem

ber 2024


	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	Acknowledgements
	Funding
	References


