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Abstract
Motivation: In bioinformatics, multiple sequence alignment (MSA) is a crucial task. However, conventional methods often struggle with aligning
ultralong sequences. To address this issue, researchers have designed MSA methods rooted in a vertical division strategy, which segments se-
quence data for parallel alignment. A prime example of this approach is FMAlign, which utilizes the FM-index to extract common seeds and seg-
ment the sequences accordingly.

Results: FMAlign2 leverages the suffix array to identify maximal exact matches, redefining the approach of FMAlign from searching for global
chains to partial chains. By using a vertical division strategy, large-scale problem is deconstructed into manageable tasks, enabling parallel execu-
tion of subMSA. Furthermore, sequence-profile alignment and refinement are incorporated to concatenate subsets, yielding the final result
seamlessly. Compared to FMAlign, FMAlign2 markedly augments the segmentation of sequences and significantly reduces the time while main-
taining accuracy, especially on ultralong datasets. Importantly, FMAlign2 enhances existing MSA methods by conferring the capability to handle
sequences reaching billions in length within an acceptable time frame.

Availability and implementation: Source code and datasets are available at https://github.com/malabz/FMAlign2 and https://zenodo.org/
records/10435770.

1 Introduction

Multiple sequence alignment (MSA) plays a crucial role in bio-
informatics, particularly in analyzing biological sequences. As
noted in a Nature publication (Van Noorden et al. 2014), MSA
remains one of the most fundamental modeling methodologies
within the biological sciences. It serves as a foundational tool in
a broad range of computational analyses, including but not lim-
ited to domain analysis, phylogenetic reconstruction, and motif
identification. The accuracy of sequence alignment is vital as it
critically impacts the validity and reliability of subsequent anal-
yses. Nevertheless, with the ongoing expansion of biological se-
quence scales, the limitations of numerous extant MSA
approaches in managing ultralong sequences are becoming in-
creasingly evident (Lewin et al. 2018). Even though most cur-
rent methods for MSA are built to align a large number of
sequences, they struggle when aligning long sequences because
of the higher computing costs related to sequence length
(Zhang et al. 2022). To this end, our primary goal is to im-
prove the performance of alignment methods, especially focus-
ing on the alignment of multiple ultralong sequences.

Conventional methods often fall short when tackling ultra-
long sequences, increasing the adoption of acceleration tech-
niques. Among these techniques, the vertical division strategy

stands out. This strategy seeks common segments/minimizers
to divide all the sequences and aligns every generated sub-
sequence in parallel using the existing MSA method, enabling
MSA methods to handle ultralong sequences more effectively.
FAME (Naznooshsadat et al. 2020), a novel vertical-division-
based method for aligning similar sequences, has gained atten-
tion in recent years. This method utilizes hash tables to detect
k-mers and minimizers, potentially incorporating nonoverlap-
ping anchors into a single chain. However, this proves ineffi-
cient for long, similar sequences. To address these limitations,
FMAlign (Liu et al. 2022) was developed, which prioritizes
common segments as candidate anchors. FMAlign uses the
FM-index (Hon et al. 2004), a widely accepted full-text index,
to efficiently query common segments of varying lengths,
speeding up anchor searches across multiple sequences and
enhancing the alignment process. Both FAME and FMAlign
search for common seeds across all sequences, forming global
chains to segment the sequences. When dealing with ultralong
sequences or sequences with low similarity, these two meth-
ods struggle to find a sufficient number of global chains for
acceleration.

To overcome the limitations of FAME and FMAlign,
FMAlign2 utilizes Maximal Exact Matches (MEMs) instead
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of k-mers to identify partial chains in sequences. Although
methods like MUMmer (Marçais et al. 2018) also partition
sequences using MUM (Maximal Unique Match) or MEMs
for pairwise sequence alignment, there are currently few
methods that use MEMs to segment multiple sequences. It
constructs suffix array (Manber and Myers 1993) and longest
common prefix (LCP) array, identifies maximal exact matches
(MEMs), and generates a colinear set of MEMs for alignment.
FMAlign2 uses the striped Smith–Waterman (SSW) (Zhao
et al. 2013) algorithm to identify similar substrings for each
MEMs in sequences where MEMs are absent. The identified
similar substrings, combined with MEMs, form the partial
chains used for subsequent sequence segmentation to generate
segments. External tools such as MAFFT (Katoh et al. 2002)
and HAlign (Zou et al. 2015, Tang et al. 2022) align these
segments in parallel. FMAlign2 leverages sequence-profile
alignment based on FFT/K-Band (Wei et al. 2022) to incorpo-
rate fragments into the backbone. Finally, FMAlign2 concate-
nates and refines these segments to generate the final result.

2 Materials and methods

2.1 Overview of FMAlign2

We present FMAlign2, an innovative MEMs-based approach
for MSA. The methodology unfolds in three primary steps
(Fig. 1):

• Step 1: MEMs Finding—In the preprocessing stage,
nucleotides that fall outside the defined character set R ¼
fA;C;G;Tg are replaced with the gap “-”. Following this,
sequences are concatenated into a single sequence. The
gSACA-K algorithm (Louza et al. 2020) is then used to es-
tablish this concatenated sequence’s suffix array and LCP
array. Finally, MEMs are generated through the traversal
of the LCP array and left-extension of LCP-interval.

• Step 2: MEMs Filtering and Partial Chain Formation—
FMAlign2 filters the MEMs to ensure their colinearity and
gives precedence to those with the largest size. It then con-
ducts the Striped Smith–Waterman (SSW) algorithm to
identify similar matches, which are subsequently
appended to the existing MEMs, culminating in the for-
mation of partial chains.

• Step 3: Parallel Alignment and Segments Combination—
The sequence data are partitioned into discrete segments.
Parallel alignment is then executed using traditional MSA
methods, such as HAlign and MAFFT. Subsequently,
Sequence-Profile alignment based on FFT/K-Band is
deployed to incorporate the fragments into the backbone.
Finally, aligned segments are concatenated, with refine-
ment applied to yield the final result.

2.2 MEMs finding

One of the core concepts in FMAlign2 is MEMs. Thus, it’s es-
sential to define the MEMs finding problem and explain the
method to obtain MEMs by constructing a suffix array and
extending LCP intervals.

MEMs finding definition—In pairwise alignment, MEMs
are exact matches between two sequences that cannot be ex-
tended to the left or right without introducing a mismatch
(Vyverman et al. 2013). These matches are widely used as
seeds for pairwise sequence alignment tools, such as
MUMmer (Marçais et al. 2018). In the context of multiple
sequences, the definition of MEMs expands as follows:

Suppose we have n sequences, and let S be the concatenated
sequence of these n sequences, distinguishing each string with
unique separator symbols not found in any string and smaller
than any symbol in the alphabet. Then, a MEMs within S can
be represented using a ðkþ 1Þ-tuple: ðl;p1;p2; . . . ;pkÞ, where
l denotes the length of the substrings, k denotes the number of
substrings, and pið1 � i � kÞ is the starting position of the
ith substring. The MEMs finding problem definition is: given
a concatenated sequence S and an integer lmin, find all MEMs
of length at least lmin in S.

Suffix array and LCP array—The construction of the suffix
array, as detailed by Manber and Myers (1993), forms a criti-
cal foundation in bioinformatics. This is attributable to the
capacity of suffix arrays, paired with additional data
structures (Muthukrishnan 2002), to effectively tackle string-
related problems. Manber and Myers (1993) defined the suf-
fix array of a string as the array of the indexes of the lexico-
graphically sorted suffix strings. On the other hand, the LCP
array provides the length of the shared prefix between two
suffixes in the SA. FMAlign2 uses the gSACA-K (Louza et al.
2020) method to construct suffix array and LCP array of the
concatenated string S with OðNÞ time complexity.

LCP interval finding—The LCP-interval (Abouelhoda et al.
2002) is an interval[i..j] of lcp-value lmin in the LCP array,
which satisfies the following properties:

1) LCP½i� < lmin,
2) LCP½k� � lmin for all k with iþ 1 � k � j,
3) LCP½k� ¼ lmin for at least one k with iþ 1 � k � j,
4) LCP½jþ 1� < lmin.

An LCP-interval is a subarray of LCP where all values are
at least lmin, and at least one value equals lmin. The LCP values
just before and after this section are always less than lmin. In
FMAlign2, we use a two-pointer approach to traverse the
LCP array in search of LCP-intervals, with the pseudocode
provided in Supplementary Algorithm S1. Combined with the
suffix array, finding all the LCP intervals means identifying
all positions of common substrings of length lmin that appear
at least twice. The LCP interval ensures that the characters to
the right of these common substrings are not the same, but it
does not guarantee this for the characters on the left.

Extending LCP interval to MEMs—According to the defini-
tion of the MEMs finding problem, to acquire MEMs of at
least length lmin, one simply extends the identified LCP inter-
vals to the left. As shown in Supplementary Fig. S1, the left
extension involves an iterative process of comparing nucleoti-
des to the left of the common substrings across all sequences
until a mismatch occurs or a sequence boundary is reached.
Consequently, by extending the LCP-intervals in this manner,
we can systematically pinpoint all MEMs across the sequen-
ces involved.

2.3 MEMs filtering and partial chain formation

Although FMAlign2 uses MEMs and MUMmer (Marçais
et al. 2018) uses MUM to segment pair sequences in a manner
that seems quite similar, segmenting multiple sequences is a
more complex problem than segmenting just two sequences.
Considering the added challenge of segmenting multiple
sequences, it’s vital to emphasize the role of MEMs colinearity
and size. If two MEMs each contain at most one substring per
sequence and these substrings consistently maintain the same
relative order across all sequences without overlap, we refer
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to these two MEMs as being colinear. Two MEMs being co-
linear means they will not conflict when segmenting sequen-
ces. The size of the ith MEMs is defined as the product of its
substring length li and the number of its substrings ki. We
also establish a minimum sequence coverage threshold
cð0 � c � 1Þ. MEMs that do not cover a proportion greater
than c of the total sequences n will be discarded. Given that
larger MEMs are more likely to contribute to MSA, our goal
is to select a set of MEMs that not only have the largest size
and are colinear with each other, but also possess a substring
count exceeding the floor value of c� n. We perform prepro-
cessing and use either global or local dynamic programming
modes to filter MEMs; specific details can be found in the
Supplementary Section S4.

Chains formation—While these filtered MEMs represent
exact matches within these subsets, variations, insertions, and
deletions can cause potential similar regions to remain unde-
tected. Consequently, FMAlign2 uses the striped Smith–
Waterman (SSW) (Zhao et al. 2013) algorithm to identify

similar substrings for each valid MEMs in sequences where
MEMs are absent. The SSW algorithm, accelerated by Simple
Instruction Multiple Data (SIMD), allows rapid local align-
ment. It aligns the exact match in MEMs against the corre-
sponding regions between the two chains. If the proportion of
gaps in the local alignment results exceeds a predefined
threshold (default value is 0.8), the identified similar substring
will be discarded because of low quality. The identified simi-
lar substrings, combined with MEMs, form the partial chains
used for subsequent sequence segmentation.

2.4 Parallel alignment and segments combination

Unlike FAME (Naznooshsadat et al. 2020) and FMAlign (Liu
et al. 2022), which use global chains, FMAlign2 segments
sequences utilizing partial chains that appear in a subset of
sequences. A global chain refers to a chain that exists in all
sequences, with its substrings being completely identical
across all sequences. On the other hand, a local chain may
only appear in some sequences, with its substrings being

fragment

Step 2: MEMs Filtering and Partial Chain Formation

Step 3: Parallel Alignment and Segments Combination

Find similar matches to form partial chains.

Sequence-Profile Alignment and Segments Combination

Filter MEMs to make them colinear with largest size

Step 1: MEMs Finding

LCP arraySuffix

Array

concatenate sequence

gSACA-K

LCP-interval

MEMs

Partial chain

Segment

Combination

Exact match

Similar match

Align segments in parallel using MSA method (e.g. MAFFT, HAlign)
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Figure 1. Workflow of FMAlign2: In Step 1, FMAlign2 constructs suffix array for the string collections, along with the LCP array. By traversing the LCP

array, LCP-intervals are obtained, which lead to the identification of MEMs. In Step 2, FMAlign2 filters MEMs to ensure their colinearity with the largest

size. Subsequently, local alignments are performed to detect similar matches, which are then appended to the existing MEMs, resulting in the formation

of partial chains. In Step 3, sequences are divided into segments by the partial chains. Leveraging parallel processing, FMAlign2 aligns these segments

using MSA methods like MAFFT and HAlign. Then fragments are aligned to segments through sequence-profile alignment, allowing the segments to be

assembled into the ultimate MSA result.
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similar but not necessarily identical. As illustrated in Step 3 of
Fig. 1, We define the collection of substrings resulting from
the segmentation by a partial chain as a segment, while the
remaining individual substring is referred to as fragment.

Parallel alignment—FMAlign2 integrates with MAFFT
(Katoh et al. 2002), HAlign2 (Zou et al. 2015), and HAlign3
(Tang et al. 2022) for aligning segments in parallel. While
these tools were chosen mainly for benchmarking against
FMAlign, it’s worth noting that with the appropriate setup,
FMAlign2 can collaborate with most MSA software. If a par-
ticular segment remains too vast for alignment, FMAlign2 re-
cursively applies itself to the set with a reduced MEMs
minimum length parameter. This recursion is limited to two
iterations.

Sequence-profile alignment—After the segments were
aligned, we incorporated fragments that the SSW algorithm
could not previously match, to the backbone. As shown in
Supplementary Fig. S3, FMAlign2 initially calculates the
length of unaligned fragments within each sequence, and
orders them from shortest to longest. Priority is given to align-
ing sequences that possess shorter unaligned fragments.
During each sequence-profile alignment, we identify the par-
tial chains flanking the fragment. Segments and partial chains
previously aligned between these chains are merged into a
new aligned set, to which the associated segment is then incor-
porated into this new set. FMAlign2 uses an improved
sequence-profile based on the FFT/K-Band strategy proposed
by Wei et al. (2022). This method leverages the fast Fourier
transform (FFT) to identify homologous segments and uses
the K-Band to minimize the dynamic programming matrix.
Ultimately, all fragments are aligned to the backbone, leaving
only the subsequence set that encompasses all sequences.

Segments combination and refinement—When forming
partial chains, errors in local alignment might incorrectly allo-
cate base pairs, which should belong to the edges of the local
chain, into adjacent segments. To refine these, we inspect and
quantify the gaps at each merging point as we concatenate the
segments. A specific example and the steps of refinement are
shown in Supplementary Fig. S4. The final optimized MSA re-
sult is obtained through refinement during the concatenation
of all segments.

3 Results and discussion

FMAlign2 supports parallel acceleration on both Linux and
Windows operating systems, utilizing OpenMP on Windows
and the pthread library on Linux. The experiments were run
with Ubuntu 20.04.4 LTS, an Intel(R) Xeon(R) Gold 6230
CPU @ 2.10 GHz, 80 CPUs, and approximately 1 TB of mem-
ory. All methods, including MAFFT, HAlign2, HAlign3,
FMAlign, and FMAlign2, used 80 threads for execution. For
brevity, when MAFFT, HAlign2, and HAlign3 are combined
with FMAlign or FMAlign2, we refer to them as M, H2, and
H3, respectively. To ensure an equitable comparison, we stan-
dardized the settings across all MSA methods. These settings
were fine-tuned to maximize both speed and accuracy.

Q (quality) score (Edgar 2004) is the number of correctly
aligned residue pairs divided by the number of residue pairs in
the reference alignment. Total column(TC) score (Edgar
2004) is the number of correctly aligned columns divided by
the number of columns in the reference alignment. For simu-
lated datasets, We use the Q and TC scores calculated by the
MUSCLE Q-Score (Edgar 2004) to evaluate the alignment

accuracy with reference alignment to compare. It’s notewor-
thy that the Q-score program fail to produce Q score and TC
scores when faced with incorrect alignments. For real data-
sets, we choose the average sum-of-pairs (SP) score value,
equal to the sum of every pairwise alignment score divided by
the number of sequences. In our SP scoring system, matches
scored 0, mismatches 1, and gaps 2 according to Liu et al.
(2022). This implies that a lower SP score corresponds to
higher alignment quality.

As shown in Fig. 2, to explore the relationship between se-
quence similarity and performance in terms of runtime, mem-
ory usage, and alignment quality, a mitochondrial-like dataset
comprising 100 sequences with different similarities ranging
from 90% to 99% is simulated using INDELible v1.03
(Fletcher and Yang 2009) provided by Tang et al. (2022). As
demonstrated in Fig. 2A and B, a rise in sequence similarity
corresponds with a gradual decline in computational time and
memory consumption across all three methods. We also ob-
serve that the curves for runtime and memory usage are not
smooth. For instance, at a 93% similarity level, there’s an
anomalous increase in memory consumption. This suggests
that FMAlign2 exhibits instability of segmentation under the
same parameter settings. It is particularly noteworthy that
FMAlign2-H3 consumes significantly less time than
FMAlign2-M and FMAlign2-H2. The memory requirements
of FMAlign2-H2 dramatically surpass those of the other two
methods. Regarding alignment quality, the alignment quality
achieved by FMAlign2-M consistently surpasses that of the
other two methods. As such, while FMAlign2-H3 demon-
strates exceptional speed in alignment, FMAlign2-M notably
outperforms its counterparts in alignment quality.

In methods where vertical division strategy serves as the
core concept, the number of segments made on the dataset is
of utmost concern. Optimal determination of the quantity of
segments can notably enhance the efficiency of the alignment.
If the number of divisions is too small, each subsequence
becomes too long, wasting resources and reducing efficiency.
Hence, this experiment compares the global and local modes
of FMAlign2, as well as FMAlign, for the segment number.
For FMAlign2’s two modes, we tested different sequence cov-
erage c of MEMs, ranging from 0.4 to 0.8. Sequence coverage
denotes the least count of substrings derived from the filtered
MEMs, with the lower the value of c, the higher the quantity
of MEMs detected. In Fig. 3, the lower curve represents a cov-
erage of 0.8, while the upper curve corresponds to a coverage
of 0.4. To ensure a fair comparison between FMAlign2 and
FMAlign, we set the minimum length of MEMs to match the
k-mer size of k¼ 39, as used in FMAlign. As shown in
Fig. 3A, for the same mitochondrial-like dataset with different
similarities ranging from 70% to 99%, we observe a corre-
sponding escalation in the number of segments within the
three evaluated methods, concurrent with an increase in data-
set similarity. We observe that when sequence similarity
approaches either 100% or 70%, the segment count in both
modes tends to converge. In most instances, the local mode
has a higher segment count than the global mode, indicating
its better suitability for handling low-similarity scenarios.
Although FMAlign2’s modes typically have a significantly
higher segment count than FMAlign, both methods face chal-
lenges in segmenting sequences when similarities are excep-
tionally low. We also explore the impact of the minimum
MEMs length parameter, l, on segment count using the
Human Mitochondrial Genome (mt) Dataset (Ingman and
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Gyllensten 2006). Figure 3B shows that when l is very small,
FMAlign2’s local mode produces a notably higher number of
segments than its global mode. This surge is attributed to the
abundance of MEMs when l is minimal, leading to an in-
creased frequency of overlaps among them. While the global
mode dismisses many MEMs in its approach of using full
MEMs for dynamic programming, the local mode preserves
the entire MEMs by only needing partial substring deletion.
Hence, when facing numerous overlaps, the local mode can
segment sequences more effectively. It’s also observed that as l
increases, the overlap among MEMs decreases, and the global
mode starts producing more segments than the local mode.
Nevertheless, FMAlign2’s segment counts in both modes

substantially exceed that of FMAlign, highlighting that shift-
ing from global to partial chain search can considerably in-
crease sequence segments. Both Fig. 3A and B indicate that in
complex scenarios, like low sequence similarity or frequent
MEMs overlaps, the local mode outshines the global mode.
However, for simpler cases, the global mode is often the supe-
rior choice.

For FMAlign2, its notable advantage is handling ultralong
sequences that are challenging for other methods.
Consequently, we selected two human Y chromosomes and
extracted different lengths from these chromosomes, truncat-
ing them at various points ranging from 10 000 bp to
15Mbp. We divided eight methods into three groups for

A B

C D

Figure 2. Comparison of three methods in FMAlign2 on hierarchical tree simulated different similarity datasets. (A) Comparison of the three methods on

time. (B) Comparison of the three methods on memory. (C) Comparison of the three methods on Q score. (D) Comparison of the three methods on TC

score.

A B

Figure 3. Comparison of two modes in FMAlign2 and FMAlign for segment number. The lower curve represents a sequence coverage of 0.8, while the

upper curve corresponds to a sequence coverage of 0.4. (A) On different simulated sequence similarity datasets, the comparison of the sequence

segmentation numbers of the local, global mode in FMAlign2 and FMAlign. (B) As the minimum length of FMAlign2’s MEMs changes, the comparison of

the number of segments between the two modes of FMAlign2 and FMAlign.
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comparison according to their core methodologies. As illus-
trated in the Supplementary Fig. S5, for methods centered on
HAlign2, both HAlign2 and FMAlign-H2 cease to function
correctly once sequence length surpasses 100 000. When the
length reaches 500 000, FMAlign-H2 also becomes inopera-
ble. In contrast, within the experiments utilizing MAFFT as
the core method, MAFFT can process sequences over 5 mil-
lion in length. We note that when the sequence is truncated to
a length of 5 million, there’s a marked surge in the runtime.
This can be attributed to FMAlign2’s instability of segmenta-
tion. Based on our observations in the experiment, the seg-
mentation of this sequence produced an extremely long
segment, and aligning this segment resulted in the unusual
spike in execution time. The experimental results demonstrate
that vertical division technology offers a significant advantage
when aligning ultralong sequences. FMAlign can handle
sequences on the order of millions, while FMAlign2 can pro-
vide results within an acceptable timeframe even when faced
with sequences 10 Mbp long or longer.

To test FMAlign2’s performance on real datasets, we
choose the long and similar datasets to serve as our bench-
mark. This dataset provided by Naznooshsadat et al. (2020)
includes five sequence sets of Variola (VARV), Mycoplasma
genitalium (M.genitalium), Mycoplasma bovis (M.bovis),
Streptococcus pneumoniae (S.pneumoniae), and Escherichia
coli (E.coli). Each set contains an equal number of sequences
but differs in average lengths, allowing us to assess the perfor-
mance of the methods concerning the sequence length.
Detailed dataset information is provided in Supplementary
Table S1. Table 1 demonstrates the performance of different
methods across five datasets. HAlign2 on its own was unable
to complete alignments for any dataset. FMAlign-H2 man-
aged to align three out of the five datasets, while FMAlign2-
H2 achieved successful alignment in all cases, underscoring
FMAlign2’s enhanced robustness. When comparing runtime
and average SP scores across these datasets, both FMAlign
and FMAlign2 not only reduced alignment time but also pre-
served the original quality of alignments (except for E.coli),
with FMAlign2 exhibiting a more pronounced reduction in
time. Notably, the combination of HAlign3 and FMAlign2
not only preserved but in some cases even significantly en-
hanced the quality of the alignment.

To evaluate our method’s performance on large-scale data-
sets, we also utilize the mtDB benchmark dataset (Ingman
and Gyllensten 2006), duplicating the genomes from this
dataset 20, 50, and 100 times. Detailed dataset information is
provided in Supplementary Table S1. As Supplementary

Table S2 in supplement material shows, comparative experi-
ments on eight methods using the mtDB indicate that
FMAlign, when combined with MAFFT and HAlign2, can re-
duce alignment time while preserving accuracy. However, this
time-saving advantage decreases as the number of sequences
increases. When handling mt (100�), FMAlign’s performance
converges with that of the stand-alone methods. In contrast,
FMAlign2 demonstrates a more pronounced acceleration,
maintaining over 50% time reduction compared to the origi-
nal methods even on the mt (100�). Notably, HAlign3’s
unique mechanism affords it the fastest alignment speed on
the mtDB dataset among the tested methods. Yet, for high-
count sequence datasets like mtDB, using FMAlign2-H3
results in longer alignment times than HAlign3 alone. In such
cases, the process of constructing suffix arrays by FMAlign2
appears to be a detriment to the efficiency of HAlign3.

We also document the peak memory usage of different
methods. As shown in Supplementary Tables S3 and S4, it is
observed that the peak memory usage when running
FMAlign2 is not stable. For large datasets, the peak memory
usage of FMAlign2 and FMAlign exceeds that of the com-
bined methods. This is attributed to the fact that the peak
memory consumption for both FMAlign2 and FMAlign
occurs during the parallel alignment phase, where the cumula-
tive memory usage of multiple tasks running concurrently
may spike momentarily. Conversely, for smaller datasets, due
to the rapid completion of subtasks, there will not be a large
number of tasks running in parallel, thus the peak memory us-
age of FMAlign and FMAlign2 will be less than that of the
combined methods. Lastly, owing to the uncertainty of the
segmentation process, it is difficult to compare the peak mem-
ory usage between FMAlign2 and FMAlign.

4 Conclusion

In this paper, we propose a novel method called FMAlign2
for ultralong sequences based on MEMs. Unlike FAME and
FMAlign, which relies on global chain segmenting sequences,
FMAlign2 adopts partial chain strategy, augmenting the seg-
ment quantity across datasets of various similarity levels.
FMAlign2 also applies a vertical division strategy, decon-
structing large-scale problem into manageable subtasks.
Moreover, the method incorporates sequence-profile align-
ment and refinement strategies to concatenate these segments
and generate the final result. FMAlign2 demonstrates signifi-
cant advantages over FMAlign, particularly in terms of se-
quence segmentation. It significantly reduces time

Table 1. Time consumption and average SP scores for virus genome datasets.a

Method VARV M.genitalium M.bovis S.pneumonia E.coli

Time Average SP Time Average SP Time Average SP Time Average SP Time Average SP

MAFFT 19.14 s 2705.66 3 min 28 s 6637 4 min 1 s 7149 16 min 10 s 1 342 439.83 28 min 8 s 1 647 099.66
HAlign2 — — — — — — — — — —
HAlign3 1.06 s 4298.16 1.06 s 10 122.33 1.07 s 10 599.16 — — — —
FMAlign-M 0.98 s 2866.66 2.67 s 6823 2.96 s 7280.5 57.33 s 888 375.33 11 h

49 min
19 s

2 808 974

FMAlign-H2 1.69 s 2083.83 2.97 s 6686.66 3.55 s 7385 — — — —
FMAlign2-M 0.23 s 2701.66 0.56 s 6843.33 0.87 s 7172 52.64 s 887 156.33 7 min 52 s 1 518 278.16
FMAlign2-H2 0.44 s 2753 1.39 s 7545.33 1.77 s 8680.5 23.55 s 872 073.5 34.57 s 1 589 134.5
FMAlign2-H3 0.52 s 2785.83 0.95 s 7313 0.86 s 8029.66 9.96 s 952 443.83 15.55 s 1 543 641.33

a “—” indicates that the method cannot complete the alignment on the dataset due to memory overflow.
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consumption while maintaining the accuracy of the align-
ment. The introduction of FMAlign2 provides a powerful so-
lution for the alignment of ultralong sequences and presents a
new perspective for dealing with large-scale sequence data
alignment in the future. However, FMAlign2 has certain limi-
tations when confronted with low similarity and extremely
large datasets. When faced with such conditions, the align-
ment time would significantly increase, and it may even fail to
finish the alignment. Our future work will explore a combina-
tion of horizontal and vertical division strategy to overcome
these limitations.

Supplementary data

Supplementary data are available at Bioinformatics online.
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