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Abstract 

The rapid growth of genomic data expands species diversity but also causes 

taxonomic imbalance, with certain species heavily overrepresented. Both data 

volume and imbalance challenge the accuracy and efficiency of metagenomic tools.  

Here, we present Chimera, a transformative tool harnessing the Interleaved 

Merged Cuckoo Filter (IMCF) and FairMin-Cap (FMC) strategy for next-level 

performance. It achieves the highest classification accuracy while providing an 

astonishing 162-fold faster database assembly than Kraken2, constructing the 

complete RefSeq genome database within mere minutes using under 32 GB of RAM, 

enabling rapid and cost-effective database updates. Furthermore, Chimera’s 

universal memory scalability supports at least 300,000 species and potentially 

over 800,000 species in practical 1 TB systems, overwhelming traditional software 

solutions. Our results establish Chimera as a foundational tool for the next era of 

metagenomic research, laying a crucial cornerstone for the future of ultramassive 

genome datasets. 
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1. Background 

Rapid advancements in sequencing technologies have led to exponential growth 

in metagenomic datasets, significantly enhancing our understanding of microbial 

ecology, clinical diagnostics, and biotechnology [1–3]. However, this rapid data 

expansion poses unprecedented challenges for metagenomic classification tools, 

primarily due to the increasing scale and complexity of reference databases [4–6]. 

Over the past decade, the NCBI RefSeq database has accumulated over 315,000 

bacterial and archaeal genome assemblies, expanding by more than 35,000 

genomes annually [7]. Similarly, the Genome Taxonomy Database (GTDB) has 

grown by over 270% since 2017, with an ongoing annual growth projection of 

approximately 30% [8]. Specialized platforms such as EMBL-EBI’s MGnify and the 

DOE JGI’s IMG/M have also experienced substantial data growth, further 

intensifying database complexity [9,10]. 

Existing metagenomic classification tools, including Kraken2, ganon, and 

Centrifuge, face significant limitations when managing extensive genomic 

databases containing hundreds of thousands or even millions of sequences [11–

13]. These tools often require days to construct databases, and their runtime 

memory requirements frequently reach hundreds of gigabytes, preventing 

researchers from utilizing complete datasets effectively [5,14]. 
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Additionally, imbalanced species representation within databases substantially 

reduces classification accuracy, a phenomenon known as Taxonomic 

Overrepresentation [15–18]. For instance, in 2017, twenty pathogenic bacterial 

species accounted for more than half of the prokaryotic genomes included in 

RefSeq, and they continue to represent a significant proportion today [19]. Such 

Taxonomic Overrepresentation obscures critical signals from less abundant or 

underrepresented taxa, emphasizing the urgent need for tools capable of 

efficiently maintaining balanced species representation in regularly updated 

databases [16,20]. 

To overcome these limitations, we introduce Chimera, a novel metagenomic 

classification tool specifically optimized for efficient database construction and 

accurate microbial identification. Chimera integrates two key innovations: the 

Interleaved Merged Cuckoo Filter (IMCF) and the FairMin-Cap (FMC) strategy. The 

IMCF significantly enhances query performance and reduces false positives, 

ensuring high classification accuracy. Concurrently, FMC addresses species 

overrepresentation by limiting minimizer counts per species, thus reducing 

database redundancy and memory usage dramatically. Notably, FMC's universal 

applicability allows integration into other metagenomic classification frameworks, 

enhancing their database efficiency, representation balance, and classification 

accuracy. Furthermore, Chimera leverages Single Instruction, Multiple Data (SIMD) 

technology to further accelerate classification speed and throughput. 

Experimental validations demonstrate Chimera’s superior performance in 
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database construction speed and accuracy. Chimera constructs the complete 

RefSeq genome database approximately 162 times faster than Kraken2 and 74 

times faster than Taxor, achieving completion within about five minutes using less 

than 32 GB of memory. Such extraordinary efficiency enables rapid and cost-

effective database updates. Remarkably, Chimera is uniquely capable of building 

the entire RefSeq database within a 1TB memory constraint. In practical 

applications, Chimera requires approximately 1.2 MB of storage per species under 

typical configurations, enabling the theoretical accommodation of over 800,000 

species within 1TB of memory. This advancement significantly alleviates 

dependency on high-performance computing resources, making high-quality 

classification analyses accessible even on standard personal computers. Future 

applications of Chimera to even larger and more complex metagenomic datasets 

will further demonstrate its role as a cornerstone for the upcoming era of 

ultramassive genome sets, transforming large-scale microbial classification from 

computationally intensive to routine. 

 

2. Results 

2.1 Utilizing Chimera in Metagenomic Taxonomic Classification 

In large-scale metagenomic analysis, existing classification tools commonly 

suffer from prolonged database construction times, high memory requirements, 

and inconsistent classification performance. To overcome these challenges, we 
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developed Chimera, a highly efficient metagenomic classification tool 

characterized by exceptionally fast database construction, minimal memory usage, 

and superior classification accuracy. 

Chimera provides a streamlined, automated workflow that seamlessly handles 

the entire process—from downloading datasets from NCBI RefSeq to database 

construction—while enabling subsequent abundance analyses and interactive 

visualization using Krona (Figure 1) [21,22]. Chimera achieves its remarkable 

efficiency by integrating two key innovations: the IMCF and the FMC strategy. IMCF 

employs an interleaved design akin to interleaved Bloom filters, allowing multiple 

cuckoo filters to be queried simultaneously while retaining rapid query 

performance [23,24]. Because each cuckoo filter stores a 16-bit fingerprint—

requiring only a single placement per item—it typically exhibits lower false-

positive rates and faster construction compared to Bloom filters. However, to 

mitigate the increased space usage from storing 16 bits per entry, IMCF develops 

a merged approach in which the first 4 bits index the species and the remaining 12 

bits encode the fingerprint. This design enables a single cuckoo filter to 

accommodate up to 16 species, substantially improving overall memory efficiency. 

Meanwhile, FMC provides a comprehensive approach to database optimization by 

filtering low-frequency minimizers, removing redundancies, and capping 

minimizer counts per species, thereby reducing taxonomic overrepresentation 

and enhancing classification accuracy. 

Furthermore, Chimera's classification phase incorporates multiple 
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optimizations, including a four-step filtering procedure, SIMD acceleration, and a 

flexible taxonomic assignment strategy that supports Variational Expectation-

Maximization (VEM), Expectation-Maximization (EM), or Lowest Common 

Ancestor (LCA), with VEM as the default. These enhancements collectively ensure 

high-speed, accurate taxonomic classification across diverse metagenomic 

datasets. 

The following sections comprehensively evaluate Chimera’s performance across 

three critical dimensions: database construction efficiency, classification accuracy, 

and the effectiveness of the FMC strategy. 

 

2.2 Comparison of Database Construction Efficiency Across Tools 

To comprehensively assess Chimera’s efficiency in database construction, we 

benchmarked its performance against five widely used metagenomic classification 

tools: Kraken2, Bracken, Ganon, Ganon2, and Taxor [11,12,14,25,26]. Kraken2 and 

Bracken are widely employed for metagenome analysis, whereas Ganon, Ganon2, 

Taxor, and Chimera all employ different variants of Bloom filters to optimize 

database storage and query efficiency. 

We evaluated the tools across four datasets of varying scale and complexity: the 

smallest-scale Archaea database, the Complete RefSeq genome database 

(Complete), a reduced RefSeq database containing one genome assembly per 

species (CompleteONE), and the full RefSeq database. These datasets cover a 

broad range of taxonomic complexities, ensuring comprehensive and 
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representative evaluations (Supplemental Table S1). Within Chimera, the load 

factor represents the proportion of utilized space within the IMCF, effectively 

defining how densely each cuckoo filter is populated. In all datasets except Archaea, 

we applied the default load factor settings to maintain optimal balance between 

memory efficiency and query performance. However, due to the simplicity and 

small size of the Archaea dataset, we configured it with an exceptionally high load 

factor of 0.95 to maximize space utilization. All experiments were conducted 

under identical hardware conditions—an AMD EPYC 7763 CPU with 1 TB memory, 

uniformly employing 32 computational threads. Key performance metrics, 

including construction time, peak memory usage, and database size, are reported 

in Figure 2 and Supplemental Table S2. 

Chimera exhibited superior performance across all datasets, most notably being 

the only tool capable of successfully constructing the full RefSeq database within 

a 1 TB memory constraint, completing the task in approximately two hours; all 

other tools failed due to memory overflow. For the CompleteONE dataset, Chimera 

achieved a 78-fold faster construction time compared to Kraken2 (98.7% 

reduction) and a 74-fold improvement compared to Taxor (98.6% reduction). On 

the larger Complete dataset, Chimera’s construction time was 162-fold faster than 

Kraken2 (99.4% reduction) and 74-fold faster than Taxor (98.6% reduction). 

Furthermore, Chimera required only 31.8 GB of memory and produced a 29.7 GB 

database for the Complete dataset—markedly lower than Kraken2’s memory 

usage of 74.2 GB and a database size of 73.4 GB. This significant reduction in 
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memory usage makes high-quality database construction feasible even on 

personal computers. 

Overall, Chimera consistently demonstrates unparalleled efficiency and 

scalability, standing as the only tool capable of constructing the entire RefSeq 

database within a 1 TB memory constraint. Most notably, Chimera achieves what 

no other classifier can—updating the widely used Complete database in an 

astonishing five minutes. This revolutionary speed redefines the feasibility of daily 

database updates, eliminating the hours or even days required by existing tools. 

By combining unmatched computational efficiency with minimal memory 

demands, Chimera shatters traditional hardware limitations, democratizing large-

scale metagenomic analysis across all research environments. As a result, Chimera 

is not just an incremental improvement but a paradigm shift in metagenomic 

classification, offering unprecedented support for high-resolution microbial 

community analysis and future microbiome research. 

 

2.3 Classification Performance on Constructed Databases 

This section evaluates Chimera’s classification performance using databases 

constructed in previous experiments, comparing it against widely-used tools such 

as Kraken2, Bracken, Ganon, Ganon2, and Taxor. Classification assessments were 

conducted using both Complete and CompleteONE databases to ensure 

consistency and comparability. 

Four real and simulated datasets from the CAMI II project were employed, 

supplemented by an additional simulated dataset to enrich the evaluation 
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(Supplemental Table S3) [27,28]. These datasets encompass diverse sequencing 

strategies, including long-read (average ~3,000 bp) and short-read (2 × 150 bp) 

sequences, designed to simulate complex microbial ecosystems such as marine 

and mouse gut microbiomes. The simulated datasets included technical 

sequencing errors and random insert-size variations to evaluate robustness and 

adaptability of classification algorithms. 

Experiments were performed under the same hardware conditions as database 

construction, with all tools executed using default or recommended settings, a 

uniform classification threshold of 70%, and a fixed configuration of 32 

computational threads to ensure a fair comparison. Performance metrics included 

accuracy, precision, recall, F1-score, and L1 distance (detailed calculation methods 

are provided in the supplementary materials). Notably, L1 distance quantifies the 

discrepancy between predicted and true abundances, with lower values indicating 

higher precision and reliability in ecological community profiling. 

Results indicate that Chimera consistently delivered outstanding performance 

across most metrics (Table 1, Supplemental Figure S1). Chimera achieved the 

highest accuracy and F1 scores across nearly all datasets, except for the CAMI 

Marine long-read dataset using the CompleteONE database, where Ganon slightly 

outperformed Chimera. Although Kraken2 demonstrated superior precision, it 

significantly lagged in accuracy, recall, and F1-score. Ganon achieved the highest 

recall in specific datasets, yet Chimera maintained stable recall performance 

overall. Importantly, Chimera consistently exhibited the lowest L1 distance across 
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all datasets, underscoring its precision and reliability in abundance estimation. 

Results showed that Chimera exhibited moderate runtimes, outperforming 

Ganon and Kraken2 but slightly behind Ganon2 and Taxor, while demonstrating 

significantly better memory efficiency, slightly lower than Taxor and markedly 

better than the other tools (Supplemental Figure S2). Except for Kraken2, memory 

consumption was primarily driven by database size rather than the volume of 

classified sequences. Taxor's advantage in memory usage was mainly attributed to 

its smaller CompleteONE database. 

In summary, Chimera achieves exceptional classification performance while 

maintaining outstanding database construction efficiency, surpassing or matching 

the best-performing tools across all key metrics. Notably, Chimera combines 

superior accuracy with minimal computational resource demands, rendering it 

highly suitable for large-scale data processing and environments with constrained 

computational resources. These attributes establish Chimera as a leading and 

forward-looking metagenomic classification solution, providing unparalleled 

technical support for high-throughput microbiome research. 

 

2.4 Effects of FMC on Classification Performance 

In this study, we introduced FMC, a novel database balancing strategy that 

significantly improves metagenomic classification by systematically limiting the 

number of minimizer hashes per species. FMC effectively mitigates taxonomic 

overrepresentation, a prevalent issue wherein abundant species 
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disproportionately dominate hash representation, masking signals from less 

abundant taxa and consequently diminishing overall classification accuracy 

[16,18]. To rigorously evaluate FMC’s impact, we constructed a series of databases 

with varying maximum hash limits using the Complete dataset and assessed 

classification performance using the CAMI II Marine long-read dataset (Figure 3). 

Results revealed substantial sensitivity of classification performance to hash 

limit parameters (Figure 3B). Classification accuracy and F1 scores improved 

sharply at a hash limit of 2×105 and peaked at 5×105, beyond which performance 

declined, indicating that excessive hash inclusion introduces noise and 

redundancy. Databases constructed without hash constraints exhibited 

significantly inferior classification outcomes alongside larger database sizes 

(Figure 3A), highlighting the critical importance of controlled hash allocation. 

Consequently, we selected a 2×105 hash limit as Chimera’s default parameter for 

the Complete dataset, achieving near-optimal classification performance while 

maintaining minimal memory and storage requirements. Under the 2×105 hash 

limit, the maximum memory usage per species can be estimated as 3.81 MB. 

However, in practical applications, due to the filtering and deduplication of FMC, 

most species complete genome do not reach this maximum limit; consequently, 

the average actual memory usage per species is approximately 1.21 MB. Under 

these conditions, a system with 1 TB of memory is estimated to accommodate over 

800,000 species, demonstrating the scalability of FMC in handling the growing 

complexity of metagenomic datasets.On larger and more complex datasets like 
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RefSeq, increased hash limits further enhanced classification effectiveness; for 

example, the 4×105 hash limit substantially outperformed the 2×105 limit (Figure 

3C). Nonetheless, even the 2×105 setting on the RefSeq dataset yielded 

classification outcomes comparable to those of the Complete dataset, with slightly 

higher accuracy and F1 scores. These findings underscore that although higher 

hash limits may benefit extremely comprehensive datasets by preserving more 

critical information, lower hash limits remain highly effective, significantly 

reducing resource consumption. 

To further validate the versatility of FMC, we integrated it into the ganon 

classifier by modifying its source code and incorporating FMC into its database 

construction pipeline (Supplementary Materials). This experiment demonstrated 

substantial performance gains across all evaluated metrics (Figure 3D), 

confirming FMC's broad applicability beyond Chimera and highlighting its 

potential to enhance the classification accuracy and resource efficiency of various 

metagenomic tools. 

Given that the 2×105 hash limit led to the truncation of 1013 taxa (Figure 3A), 

we designed a targeted validation experiment to assess whether truncation 

negatively affected classification accuracy. We randomly selected 54 truncated 

taxa, downloading approximately ten sequences per taxon from NCBI, and 

generated an independent test dataset. Remarkably, classification performance for 

these truncated taxa under the 2×105 FMC condition remained superior to the 

scenario without FMC. Critically, the detrimental impact of taxonomic 
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overrepresentation outweighed any potential negative effects of hash truncation. 

By balancing hash distribution, FMC substantially improved the detectability of 

low-abundance taxa signals, enhancing overall classification robustness and 

stability (Figure 3E). Thus, rather than weakening classification capabilities, 

targeted hash truncation through FMC effectively counteracted biases from 

taxonomic overrepresentation. 

In conclusion, FMC is a transformative strategy that not only optimizes database 

size, memory efficiency, and classification performance but also provides a 

universal solution to the long-standing issue of taxonomic overrepresentation. By 

systematically balancing species representation, FMC eliminates biases inherent 

in traditional metagenomic classification, setting a new standard for database 

construction. Moreover, the powerful synergy of FMC and IMCF delivers a solution 

to the challenge posed by the exponential growth of species in genomic databases. 

This framework is not just sufficient for current metagenomic datasets but is fully 

equipped to scale with the future explosion of genomic data. As large-scale 

sequencing efforts continue to expand, FMC and IMCF together establish a robust 

and forward-looking foundation for the next generation of metagenomic research. 

 

3. Discussion 

Our results demonstrate Chimera’s exceptional efficiency in database 

construction and robust performance in metagenomic classification, positioning it 

as an essential tool for contemporary microbiome research. A remarkable 
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advantage of Chimera lies in its extraordinary speed and low memory footprint 

during database construction. Notably, Chimera can construct a complete RefSeq 

genome database in approximately five minutes using less than 32 GB of memory, 

and complete the entire RefSeq database construction within approximately two 

hours. This unprecedented efficiency significantly reduces dependence on 

advanced computational infrastructure, enabling high-quality metagenomic 

analyses to be performed even on standard laboratory equipment or personal 

computers, substantially broadening the accessibility and applicability of 

metagenomics research [5,27]. The ability to rapidly update databases makes 

Chimera particularly valuable in research environments that require frequent 

reference updates, such as pathogen surveillance, clinical diagnostics, and 

environmental monitoring, ensuring that classification tools always operate with 

the most up-to-date genomic data [2,29]. 

Additionally, Chimera’s database scalability is predictable, and its maximum 

storage requirements increase linearly with the number of species included. 

Under default parameters, Chimera allocates at most 3.81 MB per species, but in 

actual use, the average memory requirement is approximately 1.21 MB per species. 

As a result, a 1 TB memory system is expected to accommodate databases 

containing over 800,000 species. By comparison, as of March 10, 2025, the RefSeq 

database comprises data from only 164,117 species, suggesting that Chimera’s 

architecture can comfortably accommodate database expansions for at least the 

next decade. This robust scalability not only addresses current computational 
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bottlenecks but also establishes a solid foundation for handling increasingly 

complex microbial datasets in the future. 

Chimera’s superior performance is primarily driven by two core innovations: 

IMCF and FMC. The IMCF, an advanced Bloom-filter variant, significantly enhances 

classification accuracy through highly efficient minimizer indexing, remarkably 

low false-positive rates, and SIMD-accelerated sequence queries, leading to 

substantial improvements in both classification speed and precision. The FMC 

strategy effectively mitigates biases arising from taxonomic overrepresentation by 

strictly limiting the number of hashes allocated per species, thereby substantially 

reducing memory consumption and accelerating database construction. 

Furthermore, the general applicability of FMC was demonstrated by successfully 

integrating it into another classification tool, ganon, resulting in significant 

improvements across multiple classification metrics [12]. Thus, FMC not only 

optimizes Chimera’s performance but can broadly enhance other hash-based 

metagenomic classifiers. 

The synergy of IMCF and FMC strategies allows Chimera to surpass mainstream 

classification tools, such as Kraken2 and Taxor, achieving consistently higher 

accuracy and F1 scores, and significantly reducing errors in abundance estimation 

(L1 distance). This capability makes Chimera particularly suited for investigating 

microbial diversity and ecological functions, especially in reliably identifying rare 

or low-abundance microorganisms commonly overlooked by traditional 

classification approaches. 
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Despite its substantial advancements, Chimera presents areas that warrant 

further optimization. Currently, database construction requires manual tuning of 

the load factor, where inappropriate settings could either lead to construction 

failures or unnecessarily large databases. Moreover, the current minimizer 

selection mechanism within FMC is relatively simplistic, limiting the potential 

optimization of k-mer informativeness and thus hindering further improvements 

in classification performance. Addressing these limitations should be a key focus 

of future research, including the development of automated algorithms for optimal 

load-factor determination to streamline database construction. Additionally, 

integrating statistical or machine learning approaches for improved minimizer 

selection could significantly enhance classification accuracy. Enhancements in 

data insertion methods and spatial efficiency would further increase Chimera’s 

scalability to meet the demands of increasingly large and dynamically evolving 

databases. Furthermore, our research group has already established a robust 

foundation in sequence alignment, providing a strong platform to potentially 

incorporate pangenome graphs into Chimera in the future [30–32]. This 

integration would enable precise strain-level classification, further elevating 

Chimera’s analytical resolution [33,34]. 

Collectively, these technological advancements will substantially expand 

Chimera’s application potential, enabling it to adapt effectively not only to diverse 

and resource-limited research scenarios but also to future large-scale, complex 

metagenomic data analyses. Chimera’s remarkable computational efficiency and 
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scalability position it as a foundational tool for next-generation metagenomic 

research, offering researchers globally a sustainable, efficient framework for 

database construction and microbial classification. Continued refinement and 

innovation will likely establish Chimera as a standard analytical tool in 

metagenomics, propelling high-resolution microbiome research and providing 

robust technological support for deeper explorations into microbial dynamics, 

evolutionary patterns, and ecosystem functionality. 

 

4. Conclusions 

We introduce Chimera, a highly efficient and precise metagenomic classification 

tool designed to address critical computational and database construction 

challenges in microbial research. Leveraging two key innovations—the IMCF and 

the FMC strategy—Chimera achieves exceptional classification accuracy, rapid 

query speeds, and significant memory reduction. It can construct the RefSeq 

complete genome database, within approximately five minutes using less than 32 

GB of memory, while also ensuring scalable storage (up to 800,000 species per 1 

TB memory). Experimental results highlight Chimera’s superior accuracy, 

especially in identifying low-abundance taxa, alongside the broad applicability of 

FMC in optimizing other classification tools. Overall, Chimera provides a robust, 

scalable, and accessible framework for next-generation metagenomic research, 

enabling deeper exploration into microbial diversity and ecological interactions. 
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5. Methods 

5.1 Interleaved Cuckoo Filter 

The Interleaved Bloom Filter (IBF) is a widely used data structure in large-scale 

metagenomic classification due to its ability to perform simultaneous queries 

across multiple Bloom filters with high efficiency, enabled by its interleaved 

encoding scheme [12,24,35]. This makes IBF particularly suitable for high-

throughput applications. However, IBF's practical utility is limited by several 

inherent drawbacks: its construction process is computationally expensive, its 

false positive rate remains relatively high, and its interleaved structure imposes a 

rigid uniformity constraint, requiring all filters to have the same size. This 

constraint often results in significant memory overhead in imbalanced datasets, as 

smaller taxa must conform to the size of the largest taxa. 

The Interleaved Cuckoo Filter (ICF) builds upon the principles of IBF, addressing 

these challenges by significantly improving construction speed and query 

accuracy[23]. By leveraging the adaptability of Cuckoo hashing, ICF reduces 

computational overhead during filter construction, while its splitting mechanism 

for large taxa mitigates the inefficiencies caused by dataset imbalance. Integrating 

multiple Cuckoo Filters into a single interleaved bit-vector array, ICF maintains a 

compact design that scales effectively for large-scale, high-throughput genomic 

datasets. Figure 4 provides an overview of its structure. 

As shown in Figure 4A, the construction of ICF employs a binary search 

algorithm to determine the optimal number and size of Cuckoo Filters, ensuring 
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balanced load distribution while minimizing memory overhead. Specifically, let M 

denote the total number of minimizers to be inserted, α represent the predefined 

load factor controlling the fill ratio of each filter, k denote the number of Cuckoo 

Filters, and n denote the capacity of a single filter. ICF aims to satisfy the condition: 

𝑘 ×  𝑛 ≈
𝑀

𝛼
(1) 

ensuring that the total storage capacity k × n approximates the dataset size 

scaled by the inverse of the load factor, thereby minimizing unnecessary overhead. 

The binary search begins with a lower bound of zero and an upper bound set to 

twice the number of minimizers in the largest taxon, iteratively refining the range 

until convergence to the optimal configuration satisfying Equation 1. During this 

process, oversized filters are considered for splitting dynamically, ensuring that 

the number of filters is determined by memory efficiency constraints rather than 

being solely dictated by the number of taxa. 

The choice of the load factor α is critical: a higher α improves memory efficiency 

but may increase insertion conflicts, potentially leading to degraded performance 

or insertion failures. Conversely, a lower α reduces conflicts but results in excessive 

memory overhead.  

After the construction phase determines the optimal number and size of Cuckoo 

Filters, ICF proceeds with the insertion phase, where each element is mapped to 

two candidate bucket positions using two independent hash functions. The 

primary hash function h1 is defined as: 

ℎ1(𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟) = XXH64(𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟) mod ℎ𝑎𝑠ℎ𝑆𝑖𝑧𝑒 (2) 
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where the minimizer is a 64-bit unsigned integer encoding a k-mer 

representative, and hashSize represents the number of buckets in a single Cuckoo 

Filter. XXH64 is a variant of the xxHash (https://github.com/Cyan4973/xxHash) 

family, known for its high-speed and high-quality hashing performance. The 

secondary hash function h2 is computed as: 

ℎ2(ℎ1(𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟), 𝑓𝑝) = XXH64(ℎ1(𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟)⊕ (𝑓𝑝 × 0𝑥5𝑏𝑑1𝑒995)) 

mod ℎ𝑎𝑠ℎ𝑆𝑖𝑧𝑒
(3) 

where fp is a 16-bit fingerprint derived from the minimizer. The multiplication 

by the constant 0x5bd1e995 enhances randomness and improves hash dispersion, 

reducing insertion conflicts and potential clustering effects. 

As illustrated in Figure 4B, if both candidate buckets are occupied, the insertion 

procedure initiates a "kick-out" operation, relocating an existing element to its 

alternate bucket. This process repeats iteratively until an empty slot is found or a 

rehashing threshold is reached. Leveraging the efficiency of Cuckoo hashing, ICF 

maintains a low storage overhead while ensuring robust insertion performance. 

The querying process in ICF follows a similar pattern as insertion, leveraging the 

same hash functions and interleaved data structure for efficient lookups. Given a 

query minimizer and its fingerprint the algorithm computes its two candidate 

bucket positions using the previously defined hash functions (Equations 2 and 3), 

then checks whether the corresponding interleaved buckets contain a matching 

fingerprint. To accelerate lookups, ICF's interleaved design allows multiple Cuckoo 

Filters to be stored within a single bit-vector, enabling SIMD-based acceleration via 

AVX2 instructions for parallel 16-bit fingerprint comparison as shown in Figure 
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4C. Additionally, the movemask instruction extracts results in a single operation, 

reducing branch misprediction overhead and significantly improving query 

performance. This vectorized lookup mechanism effectively reduces query latency 

compared to traditional sequential lookups. 

Despite the improvements in storage efficiency and query accuracy, ICF faces 

scalability challenges when applied to large-scale genomic datasets. As the dataset 

size expands, the number of required Cuckoo Filters increases, leading to higher 

lookup latency. Additionally, the use of 16-bit fingerprints, while improving 

accuracy, introduces additional memory overhead compared to Bloom filters, 

potentially affecting overall efficiency. Addressing these limitations requires 

further optimization, particularly in accelerating classification and managing 

database scalability. 

 

5.2 Interleaved Merged Cuckoo Filter 

To overcome the bottlenecks of the ICF in terms of classification speed and 

construction efficiency, we propose an improved data structure: the IMCF. This 

method introduces multiple optimizations for large-scale data processing in 

metagenomic analysis, significantly enhancing storage efficiency and query 

performance. The core idea of IMCF is to utilize the first 4 bits of the 16-bit 

fingerprint for storing species index information while retaining the last 12 bits 

for the minimizer hash fingerprint (as illustrated in Figure 5A). Let 𝐼 denote the 

species index (0 ≤ I < 16), and h(⋅) represent the hash function that generates the 

12-bit fingerprint. Then, each inserted fingerprint can be expressed as: 
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𝑓𝑝 = (𝐼 ≪ 12) | ℎ(𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟) (4) 

where “≪” denotes the left shift operation, and “|” represents the bitwise OR 

operation. Through this design, a single query can simultaneously match up to 16 

species by first verifying the last 12 bits of the fingerprint; if a match is found, the 

first 4-bit species index is subsequently checked (as illustrated in Figure 5C). This 

approach leads to more than a 16-fold increase in query efficiency, while the 

integration of the species index within the fingerprint also simplifies the insertion 

process, accelerating filter construction. 

During the storage construction phase, IMCF ensures efficient load balancing by 

maintaining uniform filter sizes while concurrently storing multiple species within 

each Cuckoo Filter (as illustrated in Figure 5B). Specifically, the number of 

minimizer hashes for all species, denoted as {M1, M2, …, Mn}, is first computed to 

determine the median value Med. A threshold for splitting species into smaller 

blocks is then derived as: 

𝑇 = 𝑀𝑒𝑑 × 64 (5) 

If the minimizer count for a species Mi exceeds 𝑇, the species data is split into 

smaller hash blocks for distribution among different filters. A greedy strategy is 

employed in this process: the largest minimizer hash block is always assigned to 

the filter with the lowest current storage load, ensuring balanced storage 

distribution across filters. This design enables IMCF to maintain efficient memory 

utilization while mitigating excessive insertion failures and storage imbalance, 

even in large-scale and highly complex datasets. 
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It is noteworthy that since each filter simultaneously stores up to 16 species 

while using the same 12-bit fingerprint space for position calculations, the 

probability of hash collisions increases, potentially leading to higher insertion 

failure rates under extreme loads. To address this issue, IMCF adopts a lower load 

factor, reserving additional free space within the filter to alleviate collisions and 

reduce insertion failures. Although decreasing the load factor slightly increases the 

storage overhead per filter, IMCF still achieves a significantly higher compression 

ratio than conventional ICF while leveraging parallelism to achieve a remarkable 

improvement in query performance. Therefore, IMCF effectively balances the 

trade-offs between hash collision risks and storage efficiency, offering a highly 

efficient solution for large-scale metagenomic data retrieval with enhanced 

classification accuracy and construction speed. 

 

5.3 Database Construction 

The Chimera database construction pipeline is designed to maximize 

classification efficiency and accuracy while minimizing resource consumption. At 

its core is the FairMin-Cap (FMC) strategy, which optimizes minimizer selection, 

controls database size, and ensures balanced species representation, thus 

significantly enhancing downstream classification performance. 

The pipeline begins with data retrieval using genome_updater 

(https://github.com/pirovc/genome_updater), directly acquiring reference 

genomes and associated sequences from NCBI without additional preprocessing. 

Minimizers, compact representations derived from k-mers, are then extracted 
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from the raw datasets, effectively reducing memory usage and improving query 

efficiency. 

The FMC strategy employs adaptive file-size thresholds to filter low-frequency 

minimizers. For compressed files, threshold assignment is based on the estimated 

decompressed file size (s), as follows: 

cutoff(𝑠) =

{
 
 

 
 
1, 𝑠 < 300 MB,
3, 300 MB ≤ 𝑠 < 1 GB,
10, 1 GB ≤ 𝑠 < 2 GB,
20, 2 GB ≤ 𝑠 < 3 GB,
50, 𝑠 ≥ 3 GB.

(6) 

This method retains essential classification information while significantly 

reducing noise. Subsequently, FMC removes duplicate minimizers to further 

reduce redundancy and sets a default upper limit of two million minimizers per 

species. By limiting the representation of highly abundant species, FMC effectively 

controls database size, maintains taxonomic balance, significantly enhances 

classification accuracy and query speed, and reduces overall memory usage. 

After minimizer-related processing, Chimera configures the IMCF indexing 

structure using the greedy optimization algorithm detailed in Section 5.2. This 

structure stores minimizer data alongside corresponding taxonomic labels, 

enabling rapid and accurate downstream classification analysis. 

 

5.4 Sequence Classification 

Chimera's sequence classification pipeline is engineered to handle the 

complexity and scalability demands of metagenomic data analysis. The workflow 

integrates high-efficiency minimizer matching, stringent filtering steps, and 
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adaptable classification algorithms to optimize accuracy and computational 

performance. 

The process initiates by extracting minimizers from input sequences and rapidly 

matching them against a preconstructed database stored in an IMCF. This 

structure supports fast query operations and ensures effective utilization of 

computational resources. Once the minimizer matching is completed, the system 

refines the classification results through a four-step filtering procedure. First, 

matches below a predefined threshold are discarded to eliminate low-confidence 

signals. Next, matches contributing less than 80% of the maximum match count 

are excluded to minimize noise and enhance signal-to-noise ratios. Subsequently, 

a list of reference genomes containing at least one uniquely matched read segment 

is constructed, and reads assigned to genomes lacking such matches are removed. 

For reference genomes with fewer than 5% uniquely matched reads that share 95% 

of matches with another genome, all matches are reassigned to the dominant 

genome to further improve classification precision[36]. 

Chimera employs three classification algorithms, each tailored for distinct 

analytical requirements, with one algorithm selectable per analysis. The default 

method is VEM (Variational EM), which extends Expectation-Maximization with 

Bayesian inference to refine abundance estimates and improve classification 

reliability. LCA (Lowest Common Ancestor) assigns sequences to the lowest 

taxonomic rank shared by matching references, favoring conservative assignments 

ideal for biodiversity profiling. EM (Expectation-Maximization) iteratively 
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estimates sequence abundances, making it suitable for resolving complex 

abundance distributions. 

During the final optimization stage, Chimera evaluates the outputs of the 

selected algorithm, correcting biases in abundance estimates and computing 

confidence intervals to assess classification uncertainty. Results are provided for 

individual sequences and can be aggregated to produce global abundance 

estimates. Chimera also facilitates visual exploration of classification outputs 

through Krona, enabling hierarchical visualization of taxonomic composition and 

abundance patterns [21]. Outputs are formatted in standardized file types to 

ensure compatibility with downstream analytical tools. 

 

Data availability 

All data and code used in this study are publicly available. The source code for 

Chimera can be accessed at https://github.com/malabz/Chimera, while 

benchmarking scripts and related information are provided at 

https://github.com/malabz/ChimeraBenchmark. The RefSeq dataset used for 

database construction was retrieved using genome_updater 

(https://github.com/pirovc/genome_updater), which can also be invoked directly 

within Chimera for dataset acquisition. 

For metagenomic classification, we utilized multiple datasets, including the CAMI 

II Toy Mouse Gut dataset (https://frl.publisso.de/data/frl:6421672/), the CAMI II 

Marine dataset (https://frl.publisso.de/data/frl:6425521/marine/), and a 
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simulated dataset available at https://doi.org/10.5281/zenodo.10666087. 

All experimental results supporting this study are deposited at 

https://doi.org/10.5281/zenodo.15081818. 
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Figures 

 

Figure 1 Workflow of Chimera for Metagenomic Taxonomic Classification. This figure 

illustrates the workflow of Chimera for metagenomic taxonomic classification, which consists 

of three stages: database preparation, taxonomic classification, and downstream analysis. In 

the database preparation stage, Chimera automatically downloads reference genome 

sequences from NCBI RefSeq, converts the sequences into Minimizers, and applies FMC for 

truncation optimization. The optimized Minimizers are then inserted into the IMCF to construct 

the database. In the taxonomic classification stage, Raw Sequences are processed by 

extracting Minimizers and querying them in the IMCF. The matching results are then refined 

using the Expectation-Maximization (EM) algorithm for reassignment, ultimately producing the 

final Classification Results. In the downstream analysis stage, Abundance Analysis is 

performed based on the classification results, and the figure illustrates an example at the 

Superkingdom level, producing Abundance Results, which are then visualized using Krona, 

where Archaea, Bacteria, and Eukarya are represented in different colors. 
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Figure 2 Performance benchmarking and detailed information for different taxonomic 

classifiers and reference databases. (A) Database construction comparison among six 

classification tools (Chimera, Kraken2, Bracken, Ganon, Ganon2, and Taxor) using three 

distinct datasets (Archaea, CompleteONE, and Complete). The metrics evaluated are 

database build time (top panels, blue), peak memory usage (middle panels, yellow), and final 

database size (bottom panels, red). Optimal (lowest) values in each category are highlighted 
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in red text. 

 

 

Figure 3 Impact of FMC on metagenomic classification performance using the CAMI II Marine 

long-read dataset. (A) Number of truncated taxa (purple line) and associated database size 

(grey bars) across varying maximum hash sizes (1×105  to 100×105) and in an 

unconstrained ("No Limit") scenario. (B) Classification performance (accuracy, precision, 

recall, and F1 score) across different hash size constraints under the complete dataset, 

illustrating the balance between accuracy and database efficiency. (C) Performance metrics 

for selected hash sizes (2×10⁵ and 4×10⁵) using the RefSeq dataset. (D) Performance 

comparison of ganon classifier with and without FMC (ganon vs ganon(FMC)) on the 
complete dataset. (E) Classification metrics for 54 randomly selected truncated taxa, 
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comparing fixed hash size (2×10⁵) and unconstrained scenarios under the complete dataset. 

 

 
Figure 4 Construction and Query Workflow of the ICF. (A) Construction Phase: Extracts 

minimizers from input data, performs load balancing, and builds the ICF structure. (B) 

Insertion Phase: Computes the hash value of a minimizer, truncates it to obtain a fingerprint, 

and inserts it into the ICF structure. If both candidate positions computed by the hash 

functions are occupied, a kick-out operation is performed, evicting one fingerprint and 

relocating it to an alternate position to optimize storage efficiency. (C) Query Phase: Utilizes a 

mask-based approach to simultaneously query eight slots, improving fingerprint matching 

efficiency and reducing query latency. 
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Figure 5 Design, Construction, and Query Process of the IMCF. (A) To optimize storage and 

querying, the original 1 -bit fingerprint from the ICF is split into a 4-bit species ID and a 12-bit 

fingerprint. The 4-bit species ID allows the IMCF to handle up to 1  species within a single 

filter, while the 12-bit fingerprint retains the specificity required for accurate identification. (B) 

During the construction process, species data are first sorted in descending order by size. 

Then, a greedy algorithm is used to distribute the data across different IMCF cuckoo filters, 

ensuring balanced data distribution and improved query efficiency. The figure compares the 

layout of the cuckoo filters in ICF and IMCF. (C) During querying, a  4-bit minimizer is first 

hashed into a 12-bit fingerprint. The IMCF then begins searching for matches in the 

interleaved slots. If the 12-bit portion of a slot matches the query, the 4-bit species ID stored in 

the same slot is checked to verify the corresponding species. 
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Tables 

Table 1 Taxonomic Classification Performance on Benchmark Datasets 

Software 
Dataset 

Name 

CompleteONE Complete 

Accuracy Precision Recall 
F1 

Score 
Accuracy Precision Recall 

F1 

Score 

Chimera 

CAMI II 

Marine 

(long read) 

0.50  0.87 0.54 0.66 0.60  0.91 0.64 0.75 

Kraken2 0.38 0.98 0.39 0.55 0.44 0.98 0.44 0.61 

Ganon 0.50  0.87 0.54 0.67 0.40  0.55 0.60  0.57 

Ganon2 0.49  0.85 0.54 0.66 0.59 0.89 0.63 0.74 

Taxor 0.45 0.88 0.48 0.62 0.57 0.92 0.60  0.73 

Chimera 

CAMI II 

Marine 

(short read) 

0.52 0.86 0.57 0.68 0.61 0.90  0.66 0.76 

Kraken2 0.39 0.97 0.39 0.56 0.44 0.98 0.45 0.61 

Ganon 0.51 0.85 0.57 0.68 0.48 0.65 0.64 0.65 

Ganon2 0.50  0.83 0.56 0.67 0.59 0.86 0.65 0.74 

Taxor 0.47 0.87 0.51 0.64 0.59 0.90  0.63 0.74 

Chimera 

CAMI II Toy 

Mouse Gut  

(long read) 

0.28 0.74 0.31 0.44 0.35 0.74 0.39 0.52 

Kraken2 0.20  0.84 0.21 0.33 0.25 0.85 0.26 0.40  

Ganon 0.28 0.73 0.31 0.44 0.28 0.43 0.43 0.43 

Ganon2 0.27 0.71 0.30  0.43 0.34 0.75 0.39 0.51 

Taxor 0.17 0.73 0.18 0.29 0.28 0.76 0.31 0.44 

Chimera 

CAMI II Toy 

Mouse Gut  

(short read) 

0.28 0.73 0.31 0.43 0.35 0.75 0.39 0.51 

Kraken2 0.20  0.83 0.21 0.33 0.25 0.85 0.26 0.40  

Ganon 0.27 0.72 0.30  0.43 0.29 0.48 0.43 0.45 

Ganon2 0.26 0.70  0.30  0.42 0.34 0.74 0.38 0.50  

Taxor 0.18 0.72 0.19 0.30  0.30  0.77 0.32 0.46 

Chimera 

Simulated 

Dataset 

0.58 0.67 0.81 0.73 0.88 0.90  0.97 0.94 

Kraken2 0.24 0.99 0.24 0.39 0.30  0.99  0.30  0.46 

Ganon 0.56 0.65 0.80  0.72 0.59 0.60  0.99 0.74 

Ganon2 0.54 0.63 0.80  0.70  0.71 0.72 0.98 0.83 

Taxor 0.27 0.43 0.42 0.42 0.79 0.87 0.89 0.88 
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